Project

Back to overview

Functional characterization of broad-spectrum disease resistance in cereals

Applicant Krattinger Simon
Number 154694
Funding scheme Ambizione
Research institution Institut für Pflanzen- und Mikrobiologie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Genetics
Start/End 01.01.2015 - 31.01.2018
Approved amount 597'728.00
Show all

All Disciplines (3)

Discipline
Genetics
Botany
Molecular Biology

Keywords (6)

plant-pathogen interaction; barley; Lr34; sorghum; rice; broad-spectrum disease resistance

Lay Summary (German)

Lead
Pilzliche Krankheitserreger sind ein Hauptgrund für Ernteausfälle in der Landwirtschaft. Gewisse Resistenzgene in Getreide schützen die Pflanze jedoch dauerhaft vor solchen Krankheiten. Dieses Projekt beschäftigt sich mit der Erforschung der molekularen Grundlagen von dauerhafter Krankheitsresistenz in Weizen und anderen Getreide.
Lay summary

Wie wir Menschen werden auch Pflanzen von Krankheitserregern befallen. Bei Getreide führen vor allem pilzliche Erreger, sogenannte phytopathogene Pilze, zu erheblichen Ernteausfällen und bedrohen damit die globale Ernährungssicherheit. Pflanzen haben jedoch effiziente Strategien entwickelt, sich gegen Pilzbefall zu wehren. Das Erbgut von Pflanzen enthält hunderte von Resistenzgenen, welche die Pflanze vor Pilzbefall schützen. Oft sind diese Resistenzen aber nicht sehr dauerhaft. Die pilzlichen Erreger besitzen eine enorme Anpassungsfähigkeit, was häufig zu einem raschen Zusammenbruch der Krankheitsresistenz im Feld führt.

Einige wenige Resistenzgene aber zeichnen sich durch eine erhöhte Dauerhaftigkeit aus, man spricht in diesem Fall von dauerhafter, breiter, oder rassen-unspezifischer Resistenz. Zwei Beispiele davon sind die Weizengene Lr34 und Lr22a, welche Weizenpflanzen dauerhaft vor Pilzbefall schützen. Lr34 wirkt gegen mehrere pilzliche Erreger und wird in der Weizenzüchtung schon seit mehr als hundert Jahren verwendet, ohne dass eine Anpassung der Krankheitserreger beobachtet wurde. Auf molekularer Ebene werden dauerhafte Resistenzmechanismen bis heute nur wenig verstanden. Am Beispiel von Lr34 und Lr22a versucht dieses Projekt, die molekularen Mechanismen dauerhafter Krankheitsresistenz in Getreide zu entschlüsseln. Die Resultate dieser Forschung können helfen, Getreidepflanzen in Zukunft noch effizienter vor Pilzkrankheiten zu schützen und damit die Ernährungssicherheit in Zeiten von Bevölkerungswachstum und Klimawandel zu garantieren.

Direct link to Lay Summary Last update: 15.08.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene
Singla J, Luethi L, Wicker T, Bansal U, Krattinger SG, Keller B (2017), Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene, in Theoretical and Applied Genetics, 130, 1-12.
Combined GC- and UHPLC-HR-MS based metabolomics to analyze durable anti-fungal resistance processes in cereals
Bucher R., Veyel D., Willmitzer L., Krattinger S.G., Keller B, Bigler L. (2017), Combined GC- and UHPLC-HR-MS based metabolomics to analyze durable anti-fungal resistance processes in cereals, in Chimia, 71, 156-159.
Genomic compartments in barley
Keller B., Krattinger S.G. (2017), Genomic compartments in barley, in Nature, 544, 424-425.
Large-scale maize seedling infection with Exserohilum turcicum in the greenhouse
Yang P., Herren G., Krattinger S.G., Keller B. (2017), Large-scale maize seedling infection with Exserohilum turcicum in the greenhouse, in Bio-Protocol, 7, e2567.
Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects
Boni R., Chauhan H., Hensel G., Roulin A., Sucher J., Kumlehn J., Brunner S., Krattinger S.G., Keller B. (2017), Pathogen-inducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects, in Plant Biotechnology Journal, DOI: 10.11.
Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly
Thind A.K., Wicker T., Simkova H., Fossati D., Moullet O., Brabant C., Vrana J., Dolezel J., Krattinger S.G. (2017), Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly, in Nature Biotechnology, 35, 793-796.
Rapid identification of rust resistance genes through cultivar-specific de novo chromosome assemblies
Thind A.K., Wicker T., Krattinger S.G. (2017), Rapid identification of rust resistance genes through cultivar-specific de novo chromosome assemblies, in Periyannan S. (ed.), 245-255.
Resistance: Double gain with one gene
Krattinger S.G., Keller B. (2017), Resistance: Double gain with one gene, in Nature Plants, 3, 17019.
The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize
Sucher J, Boni R, Yang P, Rogowsky P, Buechner H., Kastner C., Kumlehn J., Krattinger SG, Keller B (2017), The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize, in Plant Biotechnology Journal, 15, 489-496.
The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence
Rinaldo A., Gilbert B., Boni R., Krattinger S.G., Singh D., Park R.F., Lagudah E.S., Ayliffe M. (2017), The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence, in Plant Biotechnology Journal, 15, 894-905.
The wheat Lr34 multi-pathogen resistance gene confers resistance to anthracnose and rust in sorghum
Schnippenkoetter W., Lo C., Liu G., Dibley K., Chan W.L., White J., Milne R., Zwart A., Kwong E., Keller B., Godwin I., Krattinger S.G., Lagudah E.G. (2017), The wheat Lr34 multi-pathogen resistance gene confers resistance to anthracnose and rust in sorghum, in Plant Biotechnology Journal, 15, 1387-1396.
Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat
Sucher J., Menardo F., Praz C., Boni R., Krattinger S.G., Keller B. (2017), Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat, in Plant Pathology, DOI: 10.11.
Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt
Muller T., Schierscher-Viret B., Fossati D., Brabant C., Schori A., Keller B., Krattinger S.G. (2017), Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt, in Theoretical and Applied Genetics, DOI 10.100.
Biotic stress resistance genes in wheat
Singla J, Krattinger SG (2016), Biotic stress resistance genes in wheat, in Wrigley CW (ed.), Academic Press, Oxford, UK, 388-392.
Molecular genetics and evolution of disease resistance in cereals
Krattinger SG, Keller B (2016), Molecular genetics and evolution of disease resistance in cereals, in New Phytologist, 212, 320-332.
Rapid gene isolation in barley and wheat by mutant chromosome sequencing
Sanchez-Martin. J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vran J, Kubalakova M, Krattinger SG, Wicker T, Dolezel J, Keller B, Wulff BBH (2016), Rapid gene isolation in barley and wheat by mutant chromosome sequencing, in Genome Biology, 17, 221.
The wheat durable, multi-pathogen resistance gene Lr34 confers partial blast resistance in rice
Krattinger Simon, Sucher Justine, Selter Liselotte, Chauhan Harsh, Zhou Bo, Tang Mingzhi, Upadhyaya Narayana, Mieulet Delphine, Guiderdoni Emmanuel, Weidenbach Denise, Schaffrath Ulrich, Lagudah Evans, Keller Beat (2016), The wheat durable, multi-pathogen resistance gene Lr34 confers partial blast resistance in rice, in Plant Biotechnology Journal, 14, 1261-1268.
Trapping the intruder – Immune receptor domain fusions provide new molecular leads for improving disease resistance in plants
Krattinger Simon, Keller Beat (2016), Trapping the intruder – Immune receptor domain fusions provide new molecular leads for improving disease resistance in plants, in Genome Biology, 1.
The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley
Chauhan H., Boni R., Bucher R., Kuhn B., Buchmann G., Sucher J., Selter L.L., Hensel G., Kumlehn J., Bigler L., Glauser G., Wicker T., Krattinger S.G., Keller B. (2015), The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley, in Plant Journal, 84, 202-214.

Collaboration

Group / person Country
Types of collaboration
IPK Gatersleben, Dr. Jochen Kumlehn Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Iwate Biotechnology Research Centre, Prof. Dr. Ryohei Terauchi Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
Agroscope Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Institute of Experimental Botany Czech Republic (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
CSIRO Plant Industry, Dr. Evans Lagudah Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
University of Queensland, Prof. Dr. Ian Godwin Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results

Associated projects

Number Title Start Funding scheme
158657 Metabolomics as part of a multi-disciplinary approach to unravel the molecular function of durable disease resistance in cereals 01.03.2015 Doc.Mobility
164086 Imaging of Deep-Lying Tissues with Enhanced Resolution and Sensitivity to Study Plant Development 01.12.2015 R'EQUIP

Abstract

Fungal plant diseases are a threat to crop production worldwide. Epidemics caused by fungal pathogens frequently result in crop failure. Plants on the other hand have evolved sophisticated strategies to cope with pathogen attacks. In wheat, more than 300 genes that confer resistance against pathogenic fungi have been described. Most of these genes however provide only short-lived protection and they are frequently overcome in the field due to rapid pathogen evolution. Only a few resistance genes have been identified so far that provide durable and broad-spectrum resistance. Although an indispensable source for breeding, this type of disease resistance is only poorly understood on the molecular level and only very few broad-spectrum disease resistance genes have been cloned in cereals until today. This project aims to understand durable and broad-spectrum disease resistance in cereals. The work focuses on two genes of wheat, Lr34 and Lr22a, that confer race non-specific resistance against fungal diseases in wheat.
-