Project

Back to overview

Novel materials and methods for solar fuel generation

Applicant Alarcon Llado Esther
Number 154283
Funding scheme Ambizione Energy
Research institution Laboratoire des matériaux semiconducteurs EPFL - STI - IMX - LMSC
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.09.2014 - 31.08.2017
Approved amount 799'286.00
Show all

Keywords (3)

semiconductor nanowires; nano-photo-electro-chemistry; solar fuel

Lay Summary (French)

Lead
Mon approche combine les deux points de vue de l'ingénierie et de conception intelligente, avec le développement d'une compréhension fondamentale du potentiel ou des limitations qui peuvent exister dans des nano-structures semi-conductrices lorsqu'il est utilisé pour la conversion de l'énergie solaire.
Lay summary

Notre manque actuel de sources d'énergie fiables et le réchauffement climatique sont les plus grandes menaces écologiques auxquelles nous sommes confrontés aujourd'hui. Le soleil est une source majeure d'énergie capable de répondre à la demande actuelle d'énergie. Dans ce domaine, la photosynthèse artificielle convertit directement l'énergie solaire en carburant grâce à la formation de composés riches en énergie, comme l'hydrogène. La division de l'eau peut être divisée en deux demi-réactions: l'oxydation et la réduction. Les semi-conducteurs sont robustes et sont bien connus pour présenter des propriétés d'absorption et électriques fiables, qui en font des bons candidats comme absorbeurs de lumière dans une cellule photo-électro-chimique. Cependant, plus de travail est nécessaire pour trouver et optimiser un matériau approprié et des combinaisons de matériaux pour obtenir hydrogène en utilisant efficacement l'énergie solaire. La nano structuration peut être très avantageuse pour plusieurs raisons fondamentales et pratiques. En raison de la gestion de la lumière à l'échelle nanométrique, les propriétés des nano fils semi-conducteurs indiquent que l'efficacité de la conversion de l'énergie solaire en chimique peut être obtenue en utilisant moins de matière et dessins alternatifs. La présente proposition traite de l'utilisation de nano fils semi-conducteurs photo-anodes et cathodes pour la conversion de l'énergie solaire en combustibles chimiques. L'approche du projet est basée sur la photo-électrochimie à l'échelle nanométrique, en utilisant des méthodes expérimentales nouvellement disponibles. Le projet englobe les principaux problèmes dans le domaine de la dissociation de l'eau par l'énergie solaire. Le projet s'inscrit dans l'équilibre entre les deux domaines, l'énergie solaire et de la nanotechnologie.  Études in-situ des processus locaux à l'échelle nanométrique implique l'effort interdisciplinaire qui est entre la physique fondamentale, la chimie et les phénomènes physiques et les nouvelles technologies

Direct link to Lay Summary Last update: 14.05.2014

Lay Summary (English)

Lead
My approach combines the dual perspectives of engineering and smart design, with the development of a fundamental understanding of the potential or limitations that may exist in semiconductor nano-structures when used for solar energy conversion.
Lay summary

Our current lack of reliable sources of energy and global warming are perhaps the biggest environmental threats we face at present. The Sun is one of the largest sources of clean energy capable of satisfying the Planet’s current power demand. In this regard, artificial photosynthesis converts solar energy directly into fuel through the formation of energy-rich compounds such as hydrogen. The splitting of water (2H2O -> O2+2H2) is one the key energy-storage reactions and can be divided into its two half reactions: oxidation and reduction. Semiconductors are robust and are well-known to exhibit reliable absorption and electric properties, which makes them good candidates as light absorbers in a photo-electro-chemical cell. However, work is still needed to find and optimize the right material and material combinations for enabling highly efficient solar water splitting. Nanostructuring can be very advantageous, for several fundamental and practical reasons. Due to their intrinsic light management at subwavelength scales, semiconductor nanowires properties indicate that large conversion efficiencies can be obtained by using much less material than with alternate designs. This proposal focuses on the use of semiconductor nanowires as photo-anode and cathodes for solar energy conversion into chemical fuel; the approach is based on photo-electrochemistry conducted at the nanoscale, using newly available experimental methods. The project tackles the main problems remaining in the field of solar based water splitting. The proposed research falls into the engagement between two fields, solar energy and nanotechnology. In-situ studies of local processes at the nanoscale are of great importance for the progress in the energy-related technology. Understanding local processes involves an interdisciplinary effort that lies between fundamental physics, chemistry and novel physical phenomena and technology.

 

 

 

Direct link to Lay Summary Last update: 14.05.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells
Mikulik Dmitry, Ricci Maria, Tutuncuoglu Gozde, Matteini Federico, Vukajlovic Jelena, Vulic Natasa, Alarcon-Llado Esther, Fontcuberta i Morral Anna (2017), Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells, in Nano Energy, 41, 566-572.
Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy
Frederiksen Rune, Tutuncuoglu Gozde, Matteini Federico, Martinez Karen L., Fontcuberta i Morral Anna, Alarcon-Llado Esther (2017), Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy, in ACS Photonics, 4(9), 2235-2241.
Nanowire-Aperture Probe – Local Enhanced Fluorescence Detection for Nanoscaled Investigation in Live Cells
Frederiksen R, Alarcon-Llado E, Krogstrup P, Bojarskaite L, Buch-Månson N, Bolinsson J, Nygard J, Fontcuberta-Morral A, Martinez K (2016), Nanowire-Aperture Probe – Local Enhanced Fluorescence Detection for Nanoscaled Investigation in Live Cells, in ACS Photonics, 3, 1208.
Efficient multi-terminal spectrum splitting via a nanowire array solar cell
Dorodnyy Alexander, Alarcon-Llado Esther, Shklover Valery, Hafner Christian, Fontcuberta i Morral Anna, Leuthold Juerg (2015), Efficient multi-terminal spectrum splitting via a nanowire array solar cell, in ACS Photonics, 2, 1284.
Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures
Frederiksen R, Alarcon-Llado E, Madsen M., Rostgaard K., Krogstrup P., Vosch T., Nygard J., Fontcuberta i Morral A., Martinez K. (2015), Modulation of fluorescence signals from biomolecules along nanowires due to interaction of light with oriented nanostructures, in NanoLetters, 15, 176.

Collaboration

Group / person Country
Types of collaboration
Nanochemistry/ Max Plank Institute for Solid State Research Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Joint Center for Artificial Photosynthesis North United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Bio-Nanotechnology Lab Denmark (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Laboratory of Photonic Materials and Fibre Devices Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Laboratory of Nanoscale Electronics and Structures/ Ecole Polytechnique Federale de Lausanne Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Bioinspired materials for energy conversion workshop Talk given at a conference Photonic and surface properties of nanowires for high efficiency single and dual junction solar energy converters 11.07.2016 Berlin, Germany Alarcon Llado Esther;
EMN meeting on Nanowires Talk given at a conference Photonic properties of nanowires for high efficiency single and dual junction solar cells 16.05.2016 Amsterdam, Netherlands Alarcon Llado Esther;
IEEE Summer topicals on nanowire optoelectronics Talk given at a conference Understanding and exploiting optical properties in semiconductor nanowires for solar energy conversion 09.05.2016 Newport Beach, CA, United States of America Alarcon Llado Esther;
Nanowires conference meeting Poster Photocatalytic water splitting with GaAs nanowires 26.10.2015 Barcelona, Spain Frau Eleonora;
AVS conference meeting Talk given at a conference Optical and surface properties of Semiconductor Nanowires for solar fuels 18.10.2015 San Jose, CA, United States of America Frau Eleonora; Alarcon Llado Esther;
AVS conference meeting Talk given at a conference Nanowire Enabled 3-Dimensional Band Engineering for Efficient Next Generation Solar Cells 18.10.2015 San Jose, CA, United States of America Alarcon Llado Esther;
EPFL-MPI Science Day Talk given at a conference Photoelectrochemical water splitting by GaAs nanowire array on Si 07.10.2015 Lausanne, Switzerland Frau Eleonora;
Frontiers in Nanophotonics Poster Semiconductor nanowires for next generation photovoltaics 30.08.2015 Ascona, Switzerland Alarcon Llado Esther;
e-MRS Meeting Talk given at a conference Semiconductor nanowires: Optical & surface properties for next generation solar energy conversion 11.05.2015 Lille, France Alarcon Llado Esther;
e-MRS Meeting Poster Local photo-electrochemical characterization of photocatalysis for solar to hydrogen conversion 11.05.2015 Lille, France Alarcon Llado Esther; Frau Eleonora;
MRS Spring Meeting: Tutorial Session Talk given at a conference Raman and photoluminescence of semiconducting nanowires 06.04.2015 San Francisco, United States of America Alarcon Llado Esther;
WinsCool 2015: New Materials from Physics to Applications Talk given at a conference New semiconductor materials for efficient water splitting 02.03.2015 Champery, Switzerland Alarcon Llado Esther;
IEEE Photonics Conference Talk given at a conference The power of nanowires to revolutionize solar energy 12.10.2014 San Diego, United States of America Alarcon Llado Esther;


Abstract

My aim is to explore and exploit the inherent properties of semiconductor nanowires as building blocks for efficient fully integrated photo-electrochemical systems for solar fuel generation. I propose the study of core-shell nanowire heterostructures with potential electrical and absorption properties that may provide enough power to drive the electrochemical conversion of water and/or CO2 into fuel. With the heterostructure design, we want to make use of the additional degree of freedom in the nanowire geometry, where carrier generation and collection can be othogonalized. We also want to take advantage of the technology and properties behind 2D layered materials, and explore their benefits when combined with conventional semiconductor nanowires.My approach combines the dual perspectives of engineering and smart design, with the development of a fundamental understanding of the potential or limitations that may exist in these structures when used for solar energy conversion. At the heart of this project is the acquisition of latest generation scanning electro-chemical microscopy hardware, and its development for the nano-photo-electro-chemical characterization of nanowire heterostructures. Local electrochemical probing down to the nanometer scale is now possible and opens new gateways for the direct correlation between material properties and photo-electrochemical activity in semiconductor nanostructures. Nano-electrochemistry is an emerging field in materials science, which I propose here to exploit towards the development of new methods for renewable energy harvesting and an increased understanding of engineered nanoscopic materials for tailored photo-electrochemical performance.
-