Project

Back to overview

Investigation of phytohormone transport and the fate of hypodermal passage cells, a cell type specialized to release strigolactones

English title Investigation of phytohormone transport and the fate of hypodermal passage cells, a cell type specialized to release strigolactones
Applicant Martinoia Enrico
Number 152831
Funding scheme Project funding (Div. I-III)
Research institution Institut für Pflanzen- und Mikrobiologie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Botany
Start/End 01.05.2014 - 28.02.2017
Approved amount 714'000.00
Show all

All Disciplines (2)

Discipline
Botany
Biochemistry

Keywords (6)

exodermis; strigolactone; vacuole; membrane transport; auxin conjugates; hypodermal passage cell

Lay Summary (German)

Lead
Strigolactone wurden ursprünglich als Keimungsstimulantien von parasitischen Pflanzen entdeckt. Viele Jahre später hat man gesehen, dass diese Substanzen wichtige Funktionen für die Pflanze ausüben. Einerseits verursacht das Ausscheiden von Strigolactonen, dass sich die Hyphen von mykorrhizierenden Pilzen sich verzweigen, eine Grundvoraussetzung für eine effiziente Symbiose. Anderseits wurde beobachtet, dass Strigolactone auch aktiv die Verzweigung des Sprosses hemmen können und somit zusammen mit Auxinen eine zentrale Rolle bei der Entwicklung des Sprosses einnehmen. Das Hauptanliegen des vorliegenden Projekts ist aufzuklären, wie Strigolactone vom Ort ihrer Synthese, der Wurzelspitze einerseits zu den hypodermal passage cells (HPCs), die die Strigolactone in den Boden ausscheiden, und in den Spross transportiert werden. Zusätzlich möchten wir mehr über die HPCs erfahren, da sie für die Mykorrhizierung und möglicherweise auch für die Pflanzenernährung von zentraler Bedeutung sind.
Lay summary

Strigolactone wurden ursprünglich als Keimungsstimulantien von parasitischen Pflanzen entdeckt. Viele Jahre später hat man gesehen, dass diese Substanzen wichtige Funktionen für die Pflanze ausüben. Einerseits verursacht das Ausscheiden von Strigolactonen, dass sich die Hyphen von mykorrhizierenden Pilzen sich verzweigen, eine Grundvoraussetzung für eine effiziente Symbiose. Anderseits wurde beobachtet, dass Strigolactone auch aktiv die Verzweigung des Sprosses hemmen können und somit zusammen mit Auxinen eine zentrale Rolle bei der Entwicklung des Sprosses einnehmen. Das Hauptanliegen des vorliegenden Projekts ist aufzuklären, wie Strigolactone vom Ort ihrer Synthese, der Wurzelspitze einerseits zu den hypodermal passage cells (HPCs), die die Strigolactone in den Boden ausscheiden, und in den Spross transportiert werden. Zusätzlich möchten wir mehr  über die HPCs erfahren, da sie für die Mykorrhizierung und möglicherweise auch für die Pflanzenernährung von zentraler Bedeutung sind. Wir haben kürzlich einen Strigolactontransporter gefunden. Im vorliegenden Projekt werden wir diesen mit einem fluoreszierenden Marker versehen und mittels konfokaler Mikroskopie auf gewebe-und zellulärer  Ebene lokalisieren. Um die Interaktion mit Auxin zu beobachten, werden wir parallel auch die Auxintransporter lokalisieren. Zusätzlich sind Transportversuche mit radioaktivem Strigolacton in Kontrollpflanzen und der Transportmutante vorgesehen. Um die Rolle der HPCs zu untersuchen werden wir die Verteilung und Anzahl dieser Zellen unter verschiedenen Nährstoffbedingungen untersuchen und nach Mutanten suchen, die eine unterschiedliche Anzahl und Verteilung von HPCs aufweisen. Wir werden die entsprechenden Gene identifizieren um mehr über die spezifischen Eigenschaften der HPCs zu erfahren.

 

Direct link to Lay Summary Last update: 02.04.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida.
Bombarely Aureliano, Moser Michel, Amrad Avichai, Bao Manzhu, Bapaume Laure, Barry Cornelius S, Bliek Mattijs, Boersma Maaike R, Borghi Lorenzo, Bruggmann Rémy, Bucher Marcel, D'Agostino Nunzio, Davies Kevin, Druege Uwe, Dudareva Natalia, Egea-Cortines Marcos, Delledonne Massimo, Fernandez-Pozo Noe, Franken Philipp, Grandont Laurie, Heslop-Harrison J S, Hintzsche Jennifer, Johns Mitrick, Koes Ronald, Lv Xiaodan (2016), Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida., in Nature plants, 2(6), 16074-16074.
Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes.
Sasse Joëlle, Schlegel Markus, Borghi Lorenzo, Ullrich Friederike, Lee Miyoung, Liu Guo-Wei, Giner José-Luis, Kayser Oliver, Bigler Laurent, Martinoia Enrico, Kretzschmar Tobias (2016), Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes., in Plant, cell & environment, 39(12), 2725-2739.
Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle.
Hwang Jae-Ung, Song Won-Yong, Hong Daewoong, Ko Donghwi, Yamaoka Yasuyo, Jang Sunghoon, Yim Sojeong, Lee Eunjung, Khare Deepa, Kim Kyungyoon, Palmgren Michael, Yoon Hwan Su, Martinoia Enrico, Lee Youngsook (2016), Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant's Lifestyle., in Molecular plant, 9(3), 338-55.
The importance of strigolactone transport regulation for symbiotic signaling and shoot branching.
Borghi Lorenzo, Liu Guo-Wei, Emonet Aurélia, Kretzschmar Tobias, Martinoia Enrico (2016), The importance of strigolactone transport regulation for symbiotic signaling and shoot branching., in Planta, 243(6), 1351-60.
Abscisic acid transporters cooperate to control seed germination.
Kang Joohyun, Yim Sojeong, Choi Hyunju, Kim Areum, Lee Keun Pyo, Lopez-Molina Louis, Martinoia Enrico, Lee Youngsook (2015), Abscisic acid transporters cooperate to control seed germination., in Nature Communication, 6, 8113.
Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport.
Sasse Joelle, Simon Sibu, Gübeli Christian, Liu Guo-Wei, Cheng Xi, Friml Jiri, Bouwmeester Harro, Martinoia Enrico, Borghi Lorenzo (2015), Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport., in Current Biology, 25, 1-9.
Organellar channels and transporters.
Xu Haoxing, Martinoia Enrico, Szabo Ildiko (2015), Organellar channels and transporters., in Cell calcium, 58(1), 1-10.
The role of ABCG-type ABC transporters in phytohormone transport.
Borghi Lorenzo, Kang Joohyun, Ko Donghwi, Lee Youngsook, Martinoia Enrico (2015), The role of ABCG-type ABC transporters in phytohormone transport., in Biochem. Soc. Trans, 43, 924-930.
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin
Ko Donghwi, Kang Joohyun, Kiba Takatoshi, Park Jiyoung, Kojima Mikiko, Do Jihye, Kim Kyung Yoon, Kwon Mi, Endler Anne, Song Won-Yong, Martinoia Enrico, Sakakibara Hitoshi, Lee Youngsook (2014), Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin, in Proc. Natl. Acad, Sci. USA, 111, 7150-7155.

Collaboration

Group / person Country
Types of collaboration
Dr. Didier Reinhardt; Plant Biology; University Fribourg Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Harro Bouwmeester, Wageningen UR Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Jiri Friml, Inst. Science and Technology Austria, Klosterneuburg, Austria Austria (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Achim Walter, ETHZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Michiel Vandenbussche, ENS Lyon France (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Meeting organized by Molecular Plant Talk given at a conference The role of plant ABCG-type transporters in phytohormone transport 05.08.2016 Shanghai, China Martinoia Enrico;
XVII International Workshop Plant Membrane Biology Talk given at a conference The role of strigolactone transport for mycorrhization, plant nutrition and shoot architecture 05.06.2016 Annapolis, United States of America Martinoia Enrico;
ATP-binding cassette transporters: from mechanism to organism Talk given at a conference The role of ABC transporter in phytohormone transport 15.04.2015 Chester, UK, Great Britain and Northern Ireland Martinoia Enrico;
1st Intl. Congress on strigolactones Talk given at a conference About the multifunctional roles of the strigolactone transporter PaPDR1 02.03.2015 Wageningen, NL, Netherlands Martinoia Enrico;
Gordon Conference Talk given at a conference Malate plays a central role in plants 03.08.2014 Sunday River Resort, Newry, ME, United States of America Martinoia Enrico;
Gordon Conference Talk given at a conference ABC Transporters involved in phytohormone transport 13.07.2014 Mount Snow, United States of America Martinoia Enrico;


Self-organised

Title Date Place
Gordon Conference Organelar Channels and Transporters 14.06.2015 Bentley University Waltham, MA, United States of America

Awards

Title Year
Elelected as a Distinguished visiting professor, Univ. Nagoya, Japan travel and 2 months stay at Nagoya University supported 2016
Thomson Reuters: Highly Cited Researcher auch 2015, 2016 2014

Associated projects

Number Title Start Funding scheme
169546 The multifaceted roles of strigolactones in plant development and nutrition 01.03.2017 Project funding (Div. I-III)
169546 The multifaceted roles of strigolactones in plant development and nutrition 01.03.2017 Project funding (Div. I-III)
164086 Imaging of Deep-Lying Tissues with Enhanced Resolution and Sensitivity to Study Plant Development 01.12.2015 R'EQUIP
135747 ABC transporters involved in signalling events 01.04.2011 Project funding (Div. I-III)

Abstract

SummaryStrigolactones are now well-established plant hormones. Excreted to the soil they induce the branching of mycorrhizal fungi, strongly promoting mycorrhization. Within the plant, together with auxin they are involved in the control of shoot branching. Furthermore, during the last years it was recognized that strigolactones play many other roles in controlling diverse aspects of plant development. Recently we succeeded in identifying an ABC transporter, PhPDR1 which acts as the strigolactone exporter in Petunia. Petunia plants missing PhPDR1show a strongly reduced mycorrhization and increase lateral branch formation. Recent, unpublished results from our laboratory revealed that PhPDR1 is polarly localized in root tip cells and in hypodermal passage cells (HPCs), the cells of the root exodermis responsible for strigolactone exudation and at the same time entry points for mycorrhizal funghi. However, despite our discovery of PhPDR1, many questions concerning strigolactone transport remain open and so far our knowledge about HPCs and the root exodermis is limited. In a related project in our laboratory aimed to characterize phytohormone transport, we realized that transport of phytohormone conjugates is a neglected topic, despite the potential important role these conjugates play. The hereby submitted project proposal integrates three projects. Within subproject A we would like to continue and expand our work on strigolactone transport. We will investigate the tissue and subcellular localization of PhPDR1 in the nodes, where PhPDR1 expression has been demonstrated, and investigate the crosstalk between PhPDR1 and PIN1, an auxin transporter, which control bud dormancy or outgrowth. Within this subproject we will also make an effort to identify and characterize a strigolactone importer. In subproject B, which is a ”spin-off” of subproject A, we plan to analyze in detail HPC function, since the presence of the strigolactone transporter in HPCs raised our interest in this cell type, which is only barely explored. We will perform a forward genetic screen to identify mutants with impaired HPCs and/or exodermis. In a second, hypothesis-based approach we will explore the possibility whether the recently discovered ESB1 and ESB1-like proteins required for endodermal Casparian strip formation are also involved in the formation of Casparian strips in the exodermis. In subproject C we would like to characterize the vacuolar transporters for indoyl acetic acid-amino acid and -glucose conjugates and investigate how plants react when these, partially unstable conjugates cannot be delivered to the vacuole. In conclusion, although the three subprojects are quite diverse, they have a common theme: phytohormone transport and the characterization of cells that play an important role in this transport.
-