Project

Back to overview

White-Laser Confocal Microscopy: Modular and Sensitive Multi-channel Analysis

English title White-Laser Confocal Microscopy: Modular and Sensitive Multi-channel Analysis
Applicant Suter Beat
Number 150824
Funding scheme R'EQUIP
Research institution Institut für Zellbiologie Departement Biologie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Cellular Biology, Cytology
Start/End 01.12.2013 - 30.11.2014
Approved amount 362'368.00
Show all

Keywords (10)

Neurodegeneration; Mouse; Plasmodium; Cell biology; Trypanosome; Cancer; Drosophila; Confocal Microscopy; Parasitology; Development

Lay Summary (German)

Lead
Konfokalmikroskopie erlaubt uns, in Geweben und Zellen die genaue Position von Molekülen zu ermitteln und im lebenden Gewebe deren Veränderungen festzuhalten. Die Geräte werden dabei immer sensitiver, so dass wir auch seltene Moleküle verfolgen können. Die Spitzengeräte der neuesten Generation sind enorm vielseitig und sehr sensitiv. Sie erlauben uns in neue Bereiche vorzustossen, die uns bisher nicht zugänglich waren.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Unser übergeordnetes Ziel ist das Funktionieren von Zellen einzeln und im Verband des Gewebes besser zu verstehen. Dazu studieren wir die Funktion von Genen, RNAs und Proteinen. Mit Hilfe von Konfokalmikroskopie können wir die Position von Molekülen wie RNA und Proteine feststellen und ihren Transport in der Zelles verfolgen. Dies erlaubt uns die Funktion von spezifischen Genen und Proteinen besser zu verstehen und auch die Wirkungsweise von Zellen in einem Verband zu erforschen. Mit dieser Mikroskopie können wir sowohl einzelne fixierte Zellen anschauen als auch lebende Drosophila oder Wurm Embryonen. Auch erlaubt uns dieses Gerät neuartigste Fluoreszenzfarbstoffe optimal auszunützen, da wir in einem grossen Teil des Spektrums die Wellenlänge des Laserlichts kontinuierlich verändern können.

 

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Unsere Resultate sind wichtig für die biologische und biomedizinische Grundlagenforschung. Die meisten Projekte sind darauf  ausgerichtet, die genetischen und zellulären Grundlagen des Lebens zu erforschen. Viele unserer Arbeiten zeigen aber auch mögliche Mechanismen von Erbkrankheiten, Neurodegeneration oder Krebs auf und einige könnten daher langfristig wichtige Fortschritte in deren Bekämpfung erlauben.

 

Direct link to Lay Summary Last update: 29.11.2013

Responsible applicant and co-applicants

Publications

Publication
Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development
Lu Jiongming Bergert Martin Walther Anita Suter Beat (2014), Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development, in Nature Communications, 5, 5650.
From neurotrophic theories and cell competition to fitness fingerprints
Moreno Eduardo & Rhiner Christa (2014), From neurotrophic theories and cell competition to fitness fingerprints, in Current Opinion in Cell Biology , 31, 16-22.
Differential spatial and structural organization of the X chromosome underlies dosage compensation in C. elegans
Sharma Rahul M., Jost Daniel, Kind Jop H., Gómez-Saldivar Georgina, Van Steensel Bas, Askjaer Peter, Vaillant Cédric, Meister Peter (2013), Differential spatial and structural organization of the X chromosome underlies dosage compensation in C. elegans, in Genes and Development, 28(23), 2591-2596.
Elimination of unfit cells maintains tissue health and prolongs lifespan
Merino MM Rhiner C Lopez-Gay JM Buechel D Hauert B and Moreno E, Elimination of unfit cells maintains tissue health and prolongs lifespan, in Cell.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Super-Resolution Nanoscopy: Vision beyond the limits Talk given at a conference Ten years of super-resolution: which impacts on life sciences? 05.12.2014 University of Bern, Switzerland Heussler Volker; Meister Pierre;


Associated projects

Number Title Start Funding scheme
178549 Promoting high school life science research locally and at university labs 01.03.2018 Agora
153280 Composition of different BicD/ mRNA complexes and function of cytoplasmic Cbp80 01.07.2014 Project funding (Div. I-III)
146257 Understanding Epigenetic Mechanisms of Developmental Genome Rearrangements. 01.04.2013 Project funding (Div. I-III)
159320 Deciphering the Function of Genome Nuclear Organization in Cell Fate Determination (prolongation) 01.09.2015 SNSF Professorships
140691 Pathogen-host cell interactions during the liver stage of Plasmodium parasites 01.08.2012 Project funding (Div. I-III)
140779 Mitochondrial biogenesis in Trypanosoma brucei 01.04.2012 Project funding (Div. I-III)
135436 Composition and dynamics of BicD and Cbp transport particles 01.07.2011 Project funding (Div. I-III)
133744 Deciphering the Function of Genome Nuclear Organization in Cell Fate Determination. 01.09.2011 SNSF Professorships
145013 Multimode Live Imaging - University of Bern (MLI-be) 01.04.2013 R'EQUIP
159519 Pathogen-host cell interactions during the liver stage of Plasmodium parasites 01.08.2015 Project funding (Div. I-III)
173188 Drosophila BicD family members: mitotic functions, structural aspects of RNA localization, and functional characterization of a novel member 01.11.2017 Project funding (Div. I-III)
138359 Genetic study of cell competition in Drosophila 01.02.2012 Project funding (Div. I-III)
128460 Identification and functional analysis of distinct stress and age related pathways in onset and progression of Spinocerebellar ataxia (SCA1) 01.06.2010 SNSF Professorships
150756 Identification and functional analysis of distinct stress and age related pathways in onset and progression of Spinocerebellar ataxia (SCA1) 01.06.2014 SNSF Professorships
182465 Pathogen-host cell interactions during the liver stage of Plasmodium parasites III 01.01.2019 Project funding (Div. I-III)

Abstract

In the past years, the latest discoveries in life sciences have heavily relied on fluorescent microscopy. The number and the diversity of fluorophores and fluorescent proteins available have been increasing considerably. Nowadays, they provide the biologist community with amazing modular toolkits that can be used both on fixed and living samples, allowing a great diversity of measurements, from molecule (protein, DNA, RNA) localization, molecule concentration, molecule dynamics, molecule-molecule interactions to direct modulation of molecule interaction by optogenetics.Combinatorial use of multiple fluorophores/fluorescent proteins is routinely used to study colocalization and/or interaction between molecules with confocal microscope. Yet, these studies are fundamentally limited by the number of wavelength available for excitation, and the capacity to filter emission wavelength to avoid fluorescent bleed-through. Moreover, the increasing number of fluorescent protein combined with genetic engineering has expanded the library of tagged proteins expressed at endogenous levels. Yet, live imaging of these tools is very often limited by their very low level of expression and the combinatorial study with other markers expressed at higher levels very often leads to bleed-through. The combination of these new tools should open the way for a comprehensive quantitative biology where multiple parameters (e.g.: multiple protein concentration and localization) can be analyzed simultaneously in order to understand for instance the logic of a signaling pathway or the joint dynamics of multiple protein complexes. While simultaneous measurement of multiple parameters can now be routinely performed at the cell population scale using FACS, the same type of approach is still out of reach for the study of intact tissue/embryos, or to study the evolution in time of multiple parameters at a cellular level.To tackle these technical challenges, we propose to setup in the University of Bern a highly sensitive “White Confocal microscope”. The high flexibility in terms of excitation/emission as well as sensitivity will be achieved by using: -a white pulsed LASER for excitation along any wave length-Modular spectral selection of emission wavelengths-Highly-sensitive detectors -Fast scanning unit Finally, we look for a modular design, like the Leyca SP8, that allows further upgrades for additional functionality (i.e., super-resolution, Flim-FCS).This highly modular microscope will be used both for fixed and live sample in order to image simultaneously a high number of channels, and perform multicolour live imaging despite low signal. This innovative device will be used to answer a variety of questions from cell cycle regulation, cell-cell signaling, neuronal plasticity, subcellular and subnuclear organization to parasite-host cell interaction. This device will be part of the ‘Microscopy and Imaging Center’ (MIC) platform already established at the University of Bern, thus being available to interested researchers inside and outside the University.
-