Project

Back to overview

Implantable Bio-Electronics for Wireless and High-Resolution Monitoring of Epilepsy in-vivo, Part II

English title Implantable Bio-Electronics for Wireless and High-Resolution Monitoring of Epilepsy in-vivo, Part II
Applicant Schmid Alexandre
Number 149742
Funding scheme Project funding
Research institution Laboratoire de systèmes microélectroniques EPFL - STI - IEL - LSM
Institution of higher education EPF Lausanne - EPFL
Main discipline Microelectronics. Optoelectronics
Start/End 01.12.2013 - 31.01.2015
Approved amount 119'400.00
Show all

All Disciplines (2)

Discipline
Microelectronics. Optoelectronics
Biomedical Engineering

Keywords (3)

Cortical microelectronic implants; Wireless cortical implants; Bio-electronic interfaces

Lay Summary (French)

Lead
Un système portable et autonaume en charge de la détection du focus epileptique forme une avancée significative dans le domaine où le temps de contrôle du patient ne peut pas être prédit, et ainsi la prescription d'une phase de monitoring clinique lourde représented des coûts et risques difficiles à équilibrer avec les potentiels bénéfices thérapeutiques.
Lay summary
Le contrôle de partie du cortex épileptogéniques in-vivo a été effectué dans
un environnement clinique dans le contexte de traitement de l'épilepsie consistant
à détecter puis résecter les parties incriminées. Un système portable et autonaume
en charge de la détection du focus épileptique forme une avancée significative dans
le domaine où le temps nécessaire au contrôle du patient ne peut pas être prédit, et
ainsi, la prescription d'une phase clinique lourde de monitoring représente des
coûts et risques difficiles à mettre en balance avec les bénéfices thérapeutiques
potientiels. De plus, les récents travaux de recherches reconnaissent l'acquisition
des signaux ECoG (Electro-cortico-gramme) en haute densité comme un domaine p rometteur
susceptible d'offrir de nouvelles perspectives dans la compréhension de départ de
l'épisode épileptique, du point de vue de l'activité électrique de petits groupes
de cellules neuronales.
Ce projet est proposé comme l'extension du projet FNS No. 200021-130166 qui a
couvert la période formelle de 2010 à 2013. D'importants progrès ont résultés de
la collaboration entre les trois groupes de recherche impliqués, spécifiquement
dans le développement de systèmes microélectroniques analogiques d'acquisition
de signaux neuronaux à faible consommation et haute densité comprenant une
capacité de compression suivant la méthode compressed sensing, l'encapsulation
conformale du système sur substrat flexible comprenant les électrodes, la
transmission sans fil et à faible consommation des données et de la puissance,
ainsi qu'au niveau des spécifications systèmes.
L'extension proposée envisage l'améliorations des performances du système, son
intégration ansi que son expérimentation in-vivo.
Direct link to Lay Summary Last update: 06.11.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
A Novel Compressive Sensing Architecture for High-Density Biological Signal Recording
M. Shoaran H. Afshari A. Schmid (2014), A Novel Compressive Sensing Architecture for High-Density Biological Signal Recording, in IEEE 2014 Biomedical Circuits and Systems Conference, -, -.
An Implantable System for Intracranial Neural Recording Applications
G. Yilmaz C. Dehollain (2014), An Implantable System for Intracranial Neural Recording Applications, in IEEE Biomedical Circuits and Systems Conference (BioCAS) 2014, -, -.
Compact Low-Power Cortical Recording Architecture for Compressive Multichannel Data Acquisition
M. Shoaran M. H. Kamal C. Pollo P. Vandergheynst A. Schmid (2014), Compact Low-Power Cortical Recording Architecture for Compressive Multichannel Data Acquisition, in IEEE TBioCAS, 857.
In-Vivo Validation of a Compact Inductively-Powered Neural Recording Interface
Shoaran Yilmaz Periasamy Seiler Di Santo Pollo SchindlerWidmer Dehollain Schmid (2014), In-Vivo Validation of a Compact Inductively-Powered Neural Recording Interface, in IEEE 2014 Biomedical Circuits and Systems Conference, -, -.
Remote Powering Platform for Implantable Sensor Systems at 2.45 GHz
O. Kazanc G. Yilmaz F. Maloberti and C. Dehollain (2014), Remote Powering Platform for Implantable Sensor Systems at 2.45 GHz, in IEEE EMBC 2014, -, -.
System and Circuit Design for High-Density iEEG Recording and Epileptic Seizure Detection
Mahsa Shoaran Alexandre Schmid (2014), System and Circuit Design for High-Density iEEG Recording and Epileptic Seizure Detection, -, Workshop on Biomedical Microelectronic Translational Systems Research, WBMTSR-2014.
Wireless Communication and Power Transfer System for Intracranial Neural Recording Applications
G. Yilmaz C. Dehollain (2014), Wireless Communication and Power Transfer System for Intracranial Neural Recording Applications, in IEEE New Circuits and Systems Conference (NEWCAS) 2014, -, -.
A Fully-Integrated IC with 0.85-W/Channel Consumption for Epileptic iEEG Detection
M. Shoaran C. Pollo K. Schindler and A. Schmid, A Fully-Integrated IC with 0.85-W/Channel Consumption for Epileptic iEEG Detection, in IEEE Transactions on Circuits and Systems II, 114.
Single frequency wireless power transfer and full-duplex communication system for intracranial epilepsy monitoring
G.Yilmaz C. Dehollain, Single frequency wireless power transfer and full-duplex communication system for intracranial epilepsy monitoring, in Elsevier Microelectronics Journal.

Collaboration

Group / person Country
Types of collaboration
Bertarelli Foundation Chair in Neuroprosthetic Technology, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Neurosurgery department, Inselspital Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. S. M. (Steve) Kang, UC Merced, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
Signal Processing Laboratory 2, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. M. Giugliano, U. Antwerp, BE Belgium (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Franco Maloberti, Pavia, Italy Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Neurology department, Inselspital Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Michael Green, Irvine University, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events



Self-organised

Title Date Place

Associated projects

Number Title Start Funding scheme
130166 Implantable Bio-Electronics for Wireless and High-Resolution Monitoring of Epilepsy in-vivo 01.12.2010 Project funding

Abstract

Monitoring epileptogenic cortical areas in-vivo has been carried out in clinical environment within the context of epilepsy treatment consisting in detecting and subsequently resecting incriminated areas. A portable and autonomous system in charge of the focus detection forms a significant advance in this area where the monitoring time of patient can not be predicted, and thus, the prescription of a heavy clinical monitoring phase represents costs and risks that are difficult to balance with respect to potential therapeutic benefits. In addition, epilepsy research has recently acknowledged high-density acquisition of ECoG as a promising domain susceptible to offer new perspectives and understanding of the eplilepsy onset and seizure episode, from the perspective of the electrical activity of individual or small groups of neural cells. This project is proposed as an extension to the SNSF-funded project No. 200021_130166 “Implantable Bio-Electronics for Wireless and High-Resolution Monitoring of Epilepsy in-vivo,” formally extending over the period of December 2010 through November 2013. Significant progresses have been made as the result of collaborative results between the three involved research groups, notably in the development of low-power, low-noise high-density microelectronic analog front-end with embedded multichannel compressed sensing capability, conformal packaging of the device including electrodes on a flexible substrate, wireless transmission of data and power, and system-level specifications.This extension of the initial research proposes to achieve the following scientific goals:• 64-channel analog front-end with SAR-ADC at 20 MS/s, and data compression;• packaging technology for the analog front-end using a flexible substrate, and microfabricated high-density electrodes;• 2Mb/s data and power wireless transmission system;• co-integration of the three aforementioned blocks, packaging into one system;• animal experiments studying the effectiveness of high-density readout electrodes, and study of epileptical signal capture using the proposed system.The project extension aims at gathering the theoretical and development parts into one comprehensive system and methodology, that is applied to epilepsy study in-vivo. The research is conducted with the researchers and the supervisors involved in the earlier part of the project. The research is proposed as an extension of demonstrated successful research, which significantly mitigates any risk. This research project is presented as part of long-term goals of the research groups, which have been active and have collaborated in the domain for several years.
-