Project

Back to overview

Full waveform ambient seismic noise inversion

English title Full waveform ambient seismic noise inversion
Applicant Fichtner Andreas
Number 149143
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.04.2014 - 30.06.2017
Approved amount 347'100.00
Show all

All Disciplines (3)

Discipline
Geophysics
Mathematics
Geology

Keywords (7)

High-Performance Computing; Seismology; Computational Seismology; Adjoint Methods; Spectral-Element Modelling; Seismic Tomography; Ambient Seismic Noise

Lay Summary (German)

Lead
Das Projekt "Full waveform ambient seismic noise inversion" beschäftigt sich mit der Nutzbarmachung von seismischem Rauschen für Studien der 3D-Erdstruktur und der Kopplung zwischen Atmosphäre, Ozean und fester Erde.
Lay summary

Seismisches Rauschen, oder Noise, ist ein omnipräsenter Bestandteil des seismischen Wellenfeldes, welches sich durch den Erdkörper ausbreitet und diesen vollständig durchsetzt. Grösstenteils verursacht durch Wellenbewegungen in den Ozeanen, stellt Noise ein nicht-deterministisches – und an sich kaum nutzbares – Signal dar. Dennoch enthält Noise über grosse Distanzen kohärente Anteile, die extrahiert werden können, indem man die Signale korreliert, die an verschiedenen Orten aufgezeichnet wurden. Die somit mögliche Nutzbarmachung von Noise ist das Ziel dieses Projekts.

 

Dieses Projekt hat drei wesentliche Schwerpunkte: (1) Aufbau einer Datenbank von Noise-Korrelationen, in enge Zusammenarbeit mit dem europäischen Zentrum für seismische Daten ORFEUS, welches die Daten speichern und der Öffentlichkeit zugänglich machen wird. (2) Nutzung der Datenbank, um die geografische Verteilung der Noise-Quellen in verschiedenen Frequenzbändern und zu verschiedenen Zeiten zu bestimmen. (3) Nutzung der Datenbank, um tomografische Modelle der Erde zu verbessern, vor allem in Regionen die durch klassische Erdbebendaten schlecht abgedeckt sind – so zum Beispiel Osteuropa, die Ostküste der Amerikas, Afrika und Westaustralien.

 

Profitieren wird dieses Projekt von zahlreichen internationalen Kollaborationen, sowie von den exzellenten Resourcen am Schweizer Supercomputing Center (CSCS) in Lugano. Modernste Supercomputer werden es uns erlauben, einen beispiellosen Datensatz zu berechnen, sowie die Ausbreitung seismischer Wellen durch die Erde mit hoher Genauigkeit zu simulieren.

Unsere Resultate werden neue Einblicke in die Kopplung von Atmosphäre, Ozeanen und fester Erde liefern, sowie unser Bild von der 3D-Feinstruktur unseres Planeten wesentlich schärfen.

Direct link to Lay Summary Last update: 24.11.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Rotation and strain ambient noise interferometry
Paitz Patrick, Sager Korbinian, Fichtner Andreas (2019), Rotation and strain ambient noise interferometry, in Geophysical Journal International, 216(3), 1938-1952.
Seismic Ambient Noise
NakataNori, GualtieriLucia, FichtnerAndreas (2019), Seismic Ambient Noise, Cambridge University Press, Cambridge, UK.
Theoretical Foundations of Noise Interferometry
FichtnerAndreas, TsaiVictor (2019), Theoretical Foundations of Noise Interferometry, Cambridge University Press, Cambridge, UK, 109.
Sensitivity of Seismic Noise Correlation Functions to Global Noise Sources
Sager Korbinian, Boehm Christian, Ermert Laura, Krischer Lion, Fichtner Andreas (2018), Sensitivity of Seismic Noise Correlation Functions to Global Noise Sources, in Journal of Geophysical Research: Solid Earth, 6911-6921.
The Collaborative Seismic Earth Model: Generation 1
Fichtner Andreas, van Herwaarden Dirk-Philip, Afanasiev Michael, Simutė Saulė, Krischer Lion, Çubuk-Sabuncu Yeşim, Taymaz Tuncay, Colli Lorenzo, Saygin Erdinc, Villaseñor Antonio, Trampert Jeannot, Cupillard Paul, Bunge Hans-Peter, Igel Heiner (2018), The Collaborative Seismic Earth Model: Generation 1, in Geophysical Research Letters, 45(9), 4007-4016.
Towards full waveform ambient noise inversion
Sager Korbinian, Ermert Laura, Boehm Christian, Fichtner Andreas (2018), Towards full waveform ambient noise inversion, in Geophysical Journal International, 212(1), 566-590.
Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum
Ermert Laura, Sager Korbinian, Afanasiev Michael, Boehm Christian, Fichtner Andreas (2017), Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum, in Journal of Geophysical Research: Solid Earth, 122(11), 9184-9207.
Passive seismic monitoring with nonstationary noise sources
Delaney Evan, Ermert Laura, Sager Korbinian, Kritski Alexander, Bussat Sascha, Fichtner Andreas (2017), Passive seismic monitoring with nonstationary noise sources, in Geophysics, 82, KS57-KS70.
Generalized interferometry – I: theory for interstation correlations
Fichtner Andreas, Stehly Laurent, Ermert Laura, Boehm Christian (2016), Generalized interferometry – I: theory for interstation correlations, in Geophysical Journal International, 208(2), 603-638.
Cross-correlation imaging of ambient noise sources
Ermert Laura, Villasenor Antonio, Fichtner Andreas (2016), Cross-correlation imaging of ambient noise sources, in Geophysical Journal International, 204, 347-364.
Foundations for a multiscale collaborative Earth model
Afanasiev M., Peter D., Sager K., Simut S., Ermert L., Krischer L., Fichtner A. (2015), Foundations for a multiscale collaborative Earth model, in Geophysical Journal International, 204(1), 39-58.
Multi-scale/multi-data inversion for elastic Earth structure: A concept
FichtnerAndreas, AfanasievMichael, SagerKorbinian, ErmertLaura (2015), Multi-scale/multi-data inversion for elastic Earth structure: A concept, in Proc. 5th Int. Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering, National Technical University of Athens, Athens.
Source-structure trade-offs in ambient noise correlations
Fichtner Andreas (2015), Source-structure trade-offs in ambient noise correlations, in Geophysical Journal International , 202, 678-694.
Source and processing effects on noise correlations
Fichtner Andreas (2014), Source and processing effects on noise correlations, in Geophysical Journal International , 197, 1527-1531.
Seismic noise correlation on heterogeneous supercomputers
Fichtner Andreas, Ermert Laura, Gokhberg Alexey, Seismic noise correlation on heterogeneous supercomputers, in Seismological Research Letters.

Collaboration

Group / person Country
Types of collaboration
Dr. Alexander Kritski, Statoil Norway (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Industry/business/other use-inspired collaboration
Dr. Laurent Stehly, Universite Grenoble Alpes France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Dr. Martin Schimmel, ICTJA-CSIC, Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Daniel Peter, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Eleonore Stutzmann, IPG Paris France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Sascha Bussat, Statoil Norway (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Industry/business/other use-inspired collaboration
Prof. Heiner Igel and Lion Krischer, LMU Munich Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EGU General Assembly Poster Towards Full-Waveform Ambient Noise Inversion 23.04.2017 Wien, Austria Fichtner Andreas; Ermert Laura; Sager Korbinian;
EGU General Assembly Poster Inverting long-period noise correlations for noise sources 23.04.2017 Wien, Austria Sager Korbinian; Fichtner Andreas; Ermert Laura;
EGU General Assembly Talk given at a conference Generalised interferometry 23.04.2017 Wien, Austria Ermert Laura; Fichtner Andreas;
AGU Fall Meeting Poster Towards Full-Waveform Ambient Noise Inversion 12.12.2016 San Francisco, United States of America Fichtner Andreas; Ermert Laura; Sager Korbinian;
AGU Fall Meeting Talk given at a conference Finite frequency kernels for ambient noise sources 12.12.2016 San Francisco, United States of America Ermert Laura; Fichtner Andreas;
AGU Fall Meeting Talk given at a conference Generalised Interferometry by Correlation 12.12.2016 San Francisco, United States of America Ermert Laura; Sager Korbinian; Fichtner Andreas;
TIDES Workshop Talk given at a conference Interferometry beyond Green's function retrieval 20.09.2016 Sesimbra, Portugal Fichtner Andreas; Ermert Laura; Sager Korbinian;
AGU Fall Meeting Poster Inverting for the sources of the Earth's hum 14.12.2015 San Francisco, United States of America Ermert Laura; Fichtner Andreas;
AGU Fall Meeting Poster Towards a Full Waveform Ambient Noise Inversion 14.12.2015 San Francisco, United States of America Sager Korbinian; Fichtner Andreas;
Caltech SeismoLab Seminar Individual talk Towards full-waveform ambient noise inversion 19.02.2015 Pasadena, United States of America Fichtner Andreas; Sager Korbinian; Ermert Laura;
Stanford Exploration Project Seminar Individual talk Source and processing effects on noise correlations 12.12.2014 Stanford, United States of America Ermert Laura; Sager Korbinian; Fichtner Andreas;
AGU Fall Meeting Talk given at a conference Investigating hum sources using cross-correlation asymmetry 08.12.2014 San Francisco, United States of America Ermert Laura; Fichtner Andreas;
EGU General Assembly Talk given at a conference Source and processing effects on noise correlations 27.04.2014 Wien, Austria Fichtner Andreas; Ermert Laura;
EGU General Assembly Poster Towards a global-scale ambient noise cross-correlation data base 27.04.2014 Wien, Austria Ermert Laura; Fichtner Andreas;


Abstract

We propose to develop and apply a full seismic waveform inversion of microseismic and long-period (‘hum’) noise correlations for both 3D Earth structure and the geographic power-spectral distribution of ambient noise sources. This is intended to (i) constrain the details of Earth structure in regions that are poorly covered by earthquake data, (ii) improve our understanding of the mechanical coupling between the atmosphere, oceans and the solid Earth, and (iii) provide the scientific community with a large openly accessible data base of inter-station noise correlations in a broad frequency range.Combining spectral-element modelling of wave propagation, adjoint techniques and multi-scale methods, we will be able to drop the assumption that inter-station noise correlations equal Greens functions. This will allow us to exploit the full information contained in correlation functions, thereby going beyond the traditional analysis of fundamental-mode surface waves only. Our full waveform technology will produce more accurate Earth models for regions that are poorly covered by earthquake data. These regions include the east coast of the Americas, northern and eastern Europe, western and southern Africa, as well as central and western Australia.Furthermore, our noise source inversion will refine models of microseismic noise generation based on wave height models; and it will shed new light onto the coupling processes between the atmosphere, the oceans and the solid Earth that are responsible for the excitation of ambient seismic noise.An integral part of our developments will be the construction of a massive, openly accessible data base of noise correlations that exploits modern high-performance computing (HPC) capacity for large-scale data processing. Via a web portal, this data base will serve the scientific community, promoting seismic noise related research on solid Earth structure, ocean and atmosphere dynamics - especially at institutions where large HPC infrastructures are not available.The proposed research will be supported by an international team of experts in seismic modelling and inversion, high-performance computing, seismic noise generation, and large-scale data processing. Long-term application support and computational resources are provided by the Swiss National Supercomputing Centre, in order to ensure sustained impact on and benefit for the scientific community.
-