Project

Back to overview

Genetics to Ecology

Applicant Wüst Samuel
Number 148223
Funding scheme Ambizione
Research institution Institut für Umweltwissenschaften Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Botany
Start/End 01.05.2014 - 31.08.2017
Approved amount 570'332.00
Show all

All Disciplines (6)

Discipline
Botany
Ecology
Embryology, Developmental Biology
Genetics
Biochemistry
Molecular Biology

Keywords (5)

biodiversity effects; reproductive allocation; plant development; ecological genetics; evo-devo

Lay Summary (German)

Lead
In diesem Projekt untersuchen wir, wie Gene und Entwicklungsprozesse bestimmte Merkmale von Pflanzen beeinflussen, und wie verschiedene Umweltbedingungen die Ausprägung und Evolution dieser Merkmale verändern können. Wir konzentrieren uns dabei auf zwei Merkmale, welche die Beziehungen zwischen Individuen betreffen, nämlich jene zwischen Mutterpflanzen und ihren Nachkommen, wenn diese sich auf der Mutterpflanze zu Samen entwickeln, und jene zwischen ausgewachsenen Pflanzen in einer Pflanzengemeinschaft.
Lay summary

Hintergrund: Die Studie von ökologisch-relevanten Eigenschaften bei Pflanzen fördert einerseits unser Verständnis von evolutiven Prozessen, zeigt aber andererseits auch Möglichkeiten zu Ertragssteigerungen in der Landwirtschaft auf. In diesem Projekt möchten wir Methoden aus Genetik und Ökologie kombinieren, um folgende Fragen zu beantworten: Was sind die entwicklungsgenetischen Grundlagen von Mutter-Kind bzw. Pflanze-Pflanze Interaktionen? Beeinflussen diese Interaktionen die Fitness der Pflanzen? Was geschieht, wenn diese Interaktionen modifiziert werden?

Ziel des Projektes ist es, ein mechanistisches Verständnis der ökologischen Funktion von zwei Typen von Beziehungen zwischen Pflanzenindividuen zu gewinnen. Einerseits fragen wir, wie eine Mutterpflanze ihre Nachkommenzahl kontrollieren und ihre Ressourcen optimal auf die einzelnen Nachkommen verteilen kann. Anderseits möchten wir verstehen, wie Individuen in einer einfachen Pflanzengemeinschaft miteinander interagieren und wie solche Interaktionen zu sogenannten Diversitätseffekten führen können, die über die Summe der Leistung der einzelnen Individuen hinausgehen. Der Frage nach dem “Wie?” möchten wir die “Warum?”-Frage gegenüberstellen, d.h. wir möchten herausfinden, wie Veränderungen in Entwicklungsprozessen sich auf das Individuum bzw. auf die Gemeinschaft auswirken und diese Effekte auf evolutive Prozesse zurückführen.

Bedeutung: Das Projekt möchte eine immer noch bestehende Lücke zwischen Entwicklungsgenetik und Ökologie schliessen. Dabei hoffen wir, unser Verständnis von entwicklungsgenetischen Prozessen durch die Studie von Umwelteinflüssen, welche sich auf die Evolution dieser Prozesse auswirken, zu vertiefen.

Direct link to Lay Summary Last update: 07.03.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
A plant biodiversity effect resolved to a single chromosomal region
Wuest Samuel E., Niklaus Pascal A. (2018), A plant biodiversity effect resolved to a single chromosomal region, in Nature Ecology & Evolution, 2(12), 1933-1939.
Seed Production Affects Maternal Growth and Senescence in Arabidopsis.
Wuest Samuel Elias, Philipp Matthias Anton, Guthörl Daniela, Schmid Bernhard, Grossniklaus Ueli (2016), Seed Production Affects Maternal Growth and Senescence in Arabidopsis., in Plant Physiology, 171(1), 392-404.

Datasets

A plant biodiversity effect resolved to a single genetic locus - datasets

Author Wuest, Samuel; Niklaus, Pascal
Publication date 21.06.2018
Persistent Identifier (PID) 10.5281/zenodo.1254563
Repository Zenodo
Abstract
Despite extensive evidence that biodiversity promotes plant community productivity, progress towards understanding the mechanistic basis of this effect remains slow, impeding the development of predictive ecological theory and agricultural applications. Here, we analysed non-additive interactions between genetically divergent Arabidopsis accessions in experimental plant communities. By combining methods from ecology and genetics, we identified a major effect locus that promotes complementarity amongst genotypes and above-ground productivity in mixed communities. In experiments with near-isogenic lines, we show that this diversity effect can act independently of other genomic regions and be resolved to a single locus representing less than 0.3% of the genome. Using plant-soil-feedback experiments, we demonstrate that allelic diversity also causes genotype-specific soil legacy responses in a subsequent growing period. Our work thus shows that positive diversity effects can be linked to single Mendelian factors, and that a range of complex community properties, some of which manifest themselves even after the original community has disappeared, can have a simple, single cause. This may pave the way to novel breeding strategies, focussing on phenotypic properties that manifest themselves beyond isolated individuals, i.e. at a higher level of biological organisation.

Data for: Increasing plant group productivity through latent genetic variation for cooperation

Author Wuest, Samuel; Pires, Nuno; Luo, Shan; Messier, Julie; Vasseur, Francois; Grossniklaus, Ueli; Niklaus, Pascal
Publication date 21.05.2019
Persistent Identifier (PID) 10.5281/zenodo.2659735
Repository Zenodo
Abstract
Technologies for crop breeding have become increasingly sophisticated, yet it remains unclear whether these advances are sufficient to meet future demands. A major challenge with current crop selection regimes is that they are often based on individual performance. This tends to select for plants with “selfish” traits, which leads to a yield loss when they compete in high-density stands. In traditional breeding, this well-known “tragedy of the commons” has been addressed by anticipating ideotypes with presumably preferential characteristics. However, this approach is limited to obvious architectural and physiological traits, and it depends on a mechanistic understanding of how these modulate growth and competition. Here, we developed a general and simple method for the discovery of alleles promoting cooperation of plants in stands; it is based on the game-theoretical premise that alleles increasing cooperation incur a cost to the individual but benefit the monoculture group. Testing the approach using the model plant Arabidopsis thaliana, we found a single major effect locus where the rarer allele was associated with increased levels of cooperation and superior monoculture productivity. We show that the allele likely affects a pleiotropic regulator of growth and defense, since it is also associated with reduced root competition but higher race-specific resistance against a specialized parasite. Even though cooperation is considered evolutionarily unstable, conflicting selective forces acting on a pleiotropic gene might thus maintain latent genetic variation for it in nature. Such variation, once identified in a crop, could be rapidly leveraged in modern breeding programs and provide efficient routes to increase yields.

Collaboration

Group / person Country
Types of collaboration
Prof. Tom Juenger, The University of Texas at Austin United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Ueli Grossniklaus/University of Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Prof. Christian Fankhauser, University of Lausanne Switzerland (Europe)
- Publication
Dr. Dan Flynn, Chinese Academy of Sciences/University of Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
5th PSC-Syngenta Symposium Poster Discrete genetic elements drive diversity effects in conspecific plant communities 30.08.2017 Stein, Switzerland Wüst Samuel;
5th PSC-Syngenta Symposium Poster Higher Yield through Cheaper Leaves in the silverspoon Mutants 30.08.2017 Stein, Switzerland Wüst Samuel;
Biology17 Poster Discrete genetic elements drive diversity effects in conspecific plant communities 01.02.2017 Bern, Switzerland Wüst Samuel;
Swissplant 2016 Talk given at a conference Explaining the reproductive allocation strategy of Arabidopsis 25.01.2017 Leukerbad, Switzerland Wüst Samuel;
International Symposium on Plant Senescence Talk given at a conference Maternal decision making and reproductive allocation in monocarpic Arabidopsis 31.10.2016 Jeju Island, Korean Republic (South Korea) Wüst Samuel;
Swissplant 2016 Talk given at a conference Discrete genetic elements underlie diversity effects in conspecific plant communities 25.01.2016 Les Diablerets, Switzerland Wüst Samuel;
Symposium of the Zurich-Basel Plant Science Center Poster Identifying discrete genetic elements underlying diversity effects in conspecific plant communities 03.12.2015 Zürich, Switzerland Wüst Samuel;
Swissplant 2015 Poster Family-planning in a monocarpic plant 28.01.2015 Leukerbad, Switzerland Wüst Samuel;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Neue Gentechnik - Skalpell statt Schrotflinte Wochenzeitung German-speaking Switzerland 2015

Abstract

The study of genetic variation in ecologically relevant plant traits (e.g. traits mediating species interaction, flowering time, etc) can lead to an understanding of evolutionary processes and result in an increased agricultural output. Recent technological advances in molecular biology and genetics, together with the adoption of model organisms for basic research, have opened new possibilities to dissect genetic networks. However, to understand the evolutionary forces that shape these networks, an ecological context is necessary. The historical separation of disciplines such as community ecology, evolutionary genetics and developmental biology have hindered an integrated view as to how genetic variation influences the fitness of individuals as part of an ecological system. The integration of disciplines will be necessary to address some of the grand challenges that face biology in this century. The aims of this project are to study ecologically important traits and to examine how variation in these affects individual fitness and performance in communities. This will be achieved by merging experimental approaches from genetics and ecology. The work will be divided into complentary work packages:1) I will study the genetic and molecular bases of a life history trait that is important for the control of reproductive output. The ecological relevance of variation in this trait will be examined through selection experiments and the study of natural genetic variation. This approach is founded on developmental genetics, yet it extends far beyond the classical study of the relationship between genetic and phenotypic variation. 2) I will use genetic diversity gradients to address a fundamental ecological question, namely how genetic diversity influences the productivity of conspecific communities. Both of these will approaches will make use of the genetic model system Arabidopsis thaliana, allowing for the use of well-established and considerable genetic and genomic resources. The proposed project will be carried out at the Institute of Evolutionary Biolgogy and Environmental Studies. It will demonstrate the benefits of innovative and independent research at the intersection between disciplines. The work will represent a major step towards the integration of a variety of scientific approaches; this is a fitting goal at times when biological research is urged to contribute solutions to some of the most pressing challenges for our society.
-