Project

Back to overview

Wireless Magnetic Nanoprobes: a Tool for Characterizing and Modeling Cell Biomechanics

English title Wireless Magnetic Nanoprobes: a Tool for Characterizing and Modeling Cell Biomechanics
Applicant Nelson Bradley
Number 147152
Funding scheme Interdisciplinary projects
Research institution Institut für Robotik und Intelligente Systeme ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Biophysics
Start/End 01.08.2013 - 31.01.2017
Approved amount 633'407.00
Show all

All Disciplines (4)

Discipline
Biophysics
Other disciplines of Engineering Sciences
Cellular Biology, Cytology
Embryology, Developmental Biology

Keywords (10)

Development; Cytoplasmic properties; Cell growth; Microrobotics; Magnetic Manipulation; Nanowires; Nanoprobes; Nanotechnology; Cell biomechanics; Intracellular transport

Lay Summary (German)

Lead
Stellen Sie sich vor Sie seien Passagier auf einem winzigen U-Boot auf Entdeckungsreise im Inneren einer biologischen Zelle. Was wäre wenn Sie in sämtliche Teile einer lebendigen Zelle hervordringen, sie erforschen und vermessen könnten? Was könnten Sie lernen, welche wissenschaftlichen Erkenntnisse ergäben sich?
Lay summary
Ziel dieses Projektes ist die Entwicklung eines neuartigen Ansatzes zur Messung und Manipulation mechanischer Eigenschaften (Elastizität oder Viskosität) und Zellmembranen mit deren intrazellulären Strukturen (Zytoplasmen oder Organellen). Die drahtlose Steuerung präziser magnetischer Nanosonden entlang von drei Translationsachsen und zwei bis drei Hauptachsen eröffnet völlig neue Möglichkeiten zur Messung mechanischer Eigenschaften auf extra- oder intrazellulärer Ebene. Ein drahtloses Mikroroboter-System bestehend aus einer elektromagnetischen Plattform mit mehreren Freiheitsgraden, sowie einem Fluoreszenzmikroskop zur visuellen Verfolgung garantiert die präzise Steuerung der miniaturisierten Sonden.Jede Bewegung wird mit einem Fluoreszenzmikroskop visuell nachgezeichnet. Desweiteren werden Ansätze zur Präzision der Nanosonden untersucht so dass diese als Instrument zur Manipulation der inneren Zellstruktur verwendet werden können. Ein zentraler Aspekt dieses interdisziplinären Projektes ist die Erforschung einer neuen Technologie zur Messung und Manipulation aller Strukturen innerhalb lebender Zellen. Beispielsweise von viskoelastischen Eigenschaften eines Zytoplasmus oder der Überwachung der Zellreaktion auf die Manipulation ihrer Strukturen wie z.B. dem Zytoskelett. Insbesondere widmen wir uns der Messung viskoelastischer Eigenschaften von vaskulärem Pflanzengewebe sowie wachsenden Pollenschläuchen, welche Zellen mit einer polaren Axe und gleichlaufendem Wachstum aufweisen.
Direct link to Lay Summary Last update: 26.03.2013

Lay Summary (English)

Lead
Imagine being a passenger on a tiny submarine capable of exploring a biological cell from the inside. What if you could poke, probe, and measure the various parts that make up a cell while the cell is still alive and functioning? What could you learn, what new knowledge could be derived?
Lay summary
This project focuses on developing a new engineering approach for measuring and manipulating the mechanical properties, such as elasticity and viscosity, of cell membranes and their intracellular media, i.e. the cytoplasm and organelles. The wireless manipulation of appropriately designed magnetic nanoprobes along three translational axes, and an additional two or three rotational axes, will enable new types of measurements of mechanical properties at both extra- and intracellular levels. The miniaturized probes will be precisely and wirelessly controlled by a microrobotic system consisting of a multiple-degree-of-freedom electromagnetic platform combined with a fluorescense microscope for the visual tracking of the probes. Furthermore, we will explore approaches to functionalize the nanoprobes, such that they can be used as precise instruments to manipulate internal structures of a cell. A central aspect of this interdisciplinary project is the application of this technology to measure and manipulate internal properties of living cells, for instance to probe the viscoelastic properties of the cytoplasm or to monitor cellular responses to manipulating internal structures, such as the cytoskeleton. In particular, we will focus on measuring viscoelastic properties that exist (i) in the cells of the plant vascular system and (ii) in growing pollen tubes, which are cells with a clear polar axis and unidirectional growth.
Direct link to Lay Summary Last update: 26.03.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes.
Hu C. Vogler H. Aellen M. Shamsudhin N. Jang B. Burri J.T. Grossniklaus U. and Nelson (2017), High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes., in Lab on a Chip, 17(4), 671-680.
Artificial swimmers propelled by acoustically activated flagella
Ahmed D. Baasch T. Jang B. Pane S. Dual J. and Nelson B.J. (2016), Artificial swimmers propelled by acoustically activated flagella, in Nano Letters, 16(8), 4968-4974.
Catalytic Locomotion of Core–Shell Nanowire Motors
Jang B. Wang W. Wiget S. Petruska A.J. Chen X. Hu C. Hong A. Folio D. Ferreira A. (2016), Catalytic Locomotion of Core–Shell Nanowire Motors, in ACS nano, 10(11), 9983-9991.
Dually actuated atomic force microscope with miniaturized magnetic bead-actuators for single-molecule force measurements
Sevim S. Ozer S. Feng L. Wurzel J. Fakhraee A. Shamsudhin N. Jang B. Alcantara C. (2016), Dually actuated atomic force microscope with miniaturized magnetic bead-actuators for single-molecule force measurements, in Nanoscale Horizons, 1(6), 488-495.
Magnetometry of Individual Polycrystalline Ferromagnetic Nanowires
Shamsudhin N. Tao Y. Sort J. Jang B. Degen C.L. Nelson B.J. and Pané S. (2016), Magnetometry of Individual Polycrystalline Ferromagnetic Nanowires, in Small, 12(46), 6363-6369.
Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores
Jang B. Chen X.Z. Siegfried R. Moreno J.M.M. Özkale B. Nielsch K. Nelson B.J. and Pané (2015), Silicon-supported aluminum oxide membranes with ultrahigh aspect ratio nanopores, in RSC Advances, 5(114), 94283-94289.
Undulatory locomotion of magnetic multilink nanoswimmers.
Jang B. Gutman E. Stucki N. Seitz B.F. Wendel-García P.D. Newton T. Pokki J. Ergenem (2015), Undulatory locomotion of magnetic multilink nanoswimmers., in Nano Letters, 15(7), 4829-4833.
Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au Junctions
Jang B. Pellicer E. Guerrero M. Chen X. Choi H. Nelson B.J. Sort J. and Pane S. (2014), Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au Junctions, in ACS Applied Materials & Interfaces, 6(16), 14583-14589.

Collaboration

Group / person Country
Types of collaboration
Prof. Christian Degen, D-PHYS, ETHZ Switzerland (Europe)
- Publication
Dr. Josep M. Montero Moreno, Universität Hamburg Germany (Europe)
- Publication
Prof. Antoine Ferreira, PRISME EA, Bourges France (Europe)
- Publication
Prof. Hongsoo Choi, DGIST Korean Republic (South Korea) (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Hamdi Torun, Bogazici University Turkey (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Dr. Tessa Lühmann, University of Würzburg Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Wei Wang, Harbin Institute of Technology China (Asia)
- Publication
Prof. Yizhar Or, Technion Israel (Asia)
- Publication
Prof. Jürg Dual, IMES, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Jordi Sort, Universitat Autonoma de Barcelona Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
All SystemsX.ch Day 2016 Poster Wireless Magnetic Nanoprobes as Tools for Characterizing Pollen Tube Biomechanics 01.09.2016 Bern, Switzerland Nienhaus Ulrike;
Symposium of the Zurich-Basel Plant Science Center Poster Wireless Magnetic Nanoprobes as Tools for Characterizing Pollen Tube Biomechanics 07.11.2014 Zurich, Switzerland Nienhaus Ulrike;
2nd International SystemsX.ch Conference, Lausanne Poster Wireless Magnetic Nanoprobes as Tools for Characterizing Pollen Tube Biomechanics 20.10.2014 Lausanne, Switzerland Nienhaus Ulrike;


Awards

Title Year
At the 2018 Materials Research Society (MRS) Spring Meeting, which took place in Phoenix, Arizona, USA from April 2-6, 2018, Mr. Bumjin Jang was awarded the Silver Award for his outstanding achievements in materials research. 2018
Poster Award at the Symposium of the Zurich-Basel Plant Science Center 2014

Associated projects

Number Title Start Funding scheme
166110 Mechanical Basis for the Convergent Evolution of Sensory Hairs in Animals and Plants 01.08.2016 Interdisciplinary projects
157686 Vibrating Sample Magnetometer for Characterization of Micro- and Nanoagents 01.12.2014 R'EQUIP

Abstract

Cellular processes such as morphogenesis, mechano-transduction motility, or cellular movement and migration (e.g., during gastrulation or metastasis), are closely interrelated with the mechanical properties of living cells. While the extracellular environment and biochemical properties play an important role in these processes, it has become clear that environmental physical forces at adhesion sites and contact surfaces also stimulate biochemical processes in cells. Furthermore, internal physical properties of the cytoplasm, largely unexplored, play a central role in morphogenesis and cellular behavior. Understanding the mechanical properties of cells and their response to mechanical stimuli can provide invaluable information regarding cellular processes and culminate in models to describe and predict further cellular responses. This project focuses on developing a new engineering approach for measuring and manipulating the mechanical properties, such as elasticity and viscosity, of cell membranes and their intracellular media, i.e. the cytoplasm and organelles. The wireless manipulation of appropriately designed magnetic nanoprobes along three translational axes, and an additional two or three rotational axes, will enable new types of measurements of mechanical properties at both extra- and intracellular levels. The miniaturized probes will be precisely and wirelessly controlled by a microrobotic system consisting of a multiple-degree-of-freedom electromagnetic platform combined with a fluorescense microscope for the visual tracking of the probes. Furthermore, we will explore approaches to functionalize the nanoprobes, such that they can be used as precise instruments to manipulate internal structures of a cell. A central aspect of this interdisciplinary project is the application of this technology to measure and manipulate internal properties of living cells, for instance to probe the viscoelastic properties of the cytoplasm or to monitor cellular responses to manipulating internal structures, such as the cytoskeleton. In particular, we will focus on measuring viscoelastic properties that exist (i) in the cells of the plant vascular system and (ii) in growing pollen tubes, which are cells with a clear polar axis and unidirectional growth. This interdisciplinary project aims at the development of novel approaches that allow the use of magnetic nanoprobes in living cells, eventually leading to the formulation of models that describe the mechanical properties and behaviors of cells and tissues. Achieving these goals is only possible in the frame of an interdisciplinary team consisting of biologists and engineers, who work closely together to bridge these disciplines, developing and adapting novel tools to address specific biological questions that are related to the intracellular properties of growing cells and tissues.
-