iron pnictides; correlated electron systems; resonant photoemission; spin density waves; quantum instabilities; soft-X-ray ARPES; three-dimensional electronic structure
Husanu M.-A., Vistoli L., Verdi C., Sander A., Garcia V., Rault J., Bisti F., Lev L. L., Schmitt T., Giustino F., Mishchenko A. S., Bibes M., Strocov V. N. (2020), Electron-polaron dichotomy of charge carriers in perovskite oxides, in
Communications Physics, 3(1), 62-62.
Strocov V. N., Chikina A., Caputo M., Husanu M.-A., Bisti F., Bracher D., Schmitt T., Miletto Granozio F., Vaz C. A. F., Lechermann F. (2019), Electronic phase separation at LaAlO3/SrTiO3 interfaces tunable by oxygen deficiency, in
Physical Review Materials, 3(10), 106001-106001.
Chen Q. Y., Xu D. F., Niu X. H., Peng R., Xu H. C., Wen C. H. P., Liu X., Shu L., Tan S. Y., Lai X. C., Zhang Y. J., Lee H., Strocov V. N., Bisti F., Dudin P., Zhu J.-X., Yuan H. Q., Kirchner S., Feng D. L. (2018), Band Dependent Interlayer f -Electron Hybridization in CeRhIn5, in
Physical Review Letters, 120(6), 066403-066403.
Bisti F., Rogalev V. A., Karolak M., Paul S., Gupta A., Schmitt T., Güntherodt G., Eyert V., Sangiovanni G., Profeta G., Strocov V. N. (2017), Weakly-Correlated Nature of Ferromagnetism in Nonsymmorphic CrO2 Revealed by Bulk-Sensitive Soft-X-Ray ARPES, in
Physical Review X, 7(4), 041067-041067.
Derondeau Gerald, Bisti Federico, Kobayashi Masaki, Braun Jürgen, Ebert Hubert, Rogalev Victor A., Shi Ming, Schmitt Thorsten, Ma Junzhang, Ding Hong, Strocov Vladimir N., Minár Ján (2017), Fermi surface and effective masses in photoemission response of the (Ba1−x K x )Fe2As2 superconductor, in
Scientific Reports, 7(1), 8787-8787.
Chen Q. Y., Xu D. F., Niu X. H., Jiang J., Peng R., Xu H. C., Wen C. H. P., Ding Z. F., Huang K., Shu L., Zhang Y. J., Lee H., Strocov V. N., Shi M., Bisti F., Schmitt T., Huang Y. B., Dudin P., Lai X. C., Kirchner S., Yuan H. Q., Feng D. L. (2017), Direct observation of how the heavy-fermion state develops in CeCoIn5, in
Physical Review B, 96(4), 045107-045107.
Woerle J., Bisti F., Husanu M.-A., Strocov V. N., Schneider C. W., Sigg H., Gobrecht J., Grossner U., Camarda M. (2017), Electronic band structure of the buried SiO 2 /SiC interface investigated by soft x-ray ARPES, in
Applied Physics Letters, 110(13), 132101-132101.
Xu N., Autès G., Matt C. E., Lv B. Q., Yao M. Y., Bisti F., Strocov V. N., Gawryluk D., Pomjakushina E., Conder K., Plumb N. C., Radovic M., Qian T., Yazyev O. V., Mesot J., Ding H., Shi M. (2017), Distinct Evolutions of Weyl Fermion Quasiparticles and Fermi Arcs with Bulk Band Topology in Weyl Semimetals, in
Physical Review Letters, 118(10), 106406-106406.
Lev L. L., Averyanov D. V., Tokmachev A. M., Bisti F., Rogalev V. A., Strocov V. N., Storchak V. G. (2017), Band structure of the EuO/Si interface: justification for silicon spintronics, in
Journal of Materials Chemistry C, 5(1), 192-200.
Bruno F. Y., Gibert M., McKeown Walker S., Peil O. E., de la Torre A., Riccò S., Wang Z., Catalano S., Tamai A., Bisti F., Strocov V. N., Triscone J.-M., Baumberger F. (2017), Electronic structure of buried LaNiO 3 layers in (111)-oriented LaNiO 3 /LaMnO 3 superlattices probed by soft x-ray ARPES, in
APL Materials, 5(1), 016101-016101.
Manzoni G., Gragnaniello L., Autès G., Kuhn T., Sterzi A., Cilento F., Zacchigna M., Enenkel V., Vobornik I., Barba L., Bisti F., Bugnon Ph., Magrez A., Strocov V. N., Berger H., Yazyev O. V., Fonin M., Parmigiani F., Crepaldi A. (2016), Evidence for a Strong Topological Insulator Phase in ZrTe5, in
Physical Review Letters, 117(23), 237601-237601.
Krempaský J., Volfová H., Muff S., Pilet N., Landolt G., Radović M., Shi M., Kriegner D., Holý V., Braun J., Ebert H., Bisti F., Rogalev V. A., Strocov V. N., Springholz G., Minár J., Dil J. H. (2016), Disentangling bulk and surface Rashba effects in ferroelectric α -GeTe, in
Physical Review B, 94(20), 205111-205111.
Krempaský J., Muff S., Bisti F., Fanciulli M., Volfová H., Weber A. P., Pilet N., Warnicke P., Ebert H., Braun J., Bertran F., Volobuev V. V., Minár J., Springholz G., Dil J. H., Strocov V. N. (2016), Entanglement and manipulation of the magnetic and spin–orbit order in multiferroic Rashba semiconductors, in
Nature Communications, 7, 13071-13071.
Matt C. E., Xu N., Lv Baiqing, Ma Junzhang, Bisti F., Park J., Shang T., Cao Chongde, Song Yu, Nevidomskyy Andriy H., Dai Pengcheng, Patthey L., Plumb N. C., Radovic M., Mesot J., Shi M. (2016), NaFe0.56Cu0.44As : A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction, in
Physical Review Letters, 117(9), 097001-097001.
Xu N., Weng H. M., Lv B. Q., Matt C. E., Park J., Bisti F., Strocov V. N., Gawryluk D., Pomjakushina E., Conder K., Plumb N. C., Radovic M., Autès G., Yazyev O. V., Fang Z., Dai X., Qian T., Mesot J., Ding H., Shi M. (2016), Observation of Weyl nodes and Fermi arcs in tantalum phosphide, in
Nature Communications, 7, 11006-11006.
Lev L.L. et al. (2016), Band Structure of EuO/Si Spin Contact: Justification for Silicon Spintronics, in
arXiv.org (in review with Small), 1603.04666.
Krempasky J. et al. (2016), Entanglement and manipulation of the magnetic and spin-orbit order in multiferroic Rashba semiconductors, in
arXiV.org (in review with Nature Comm.), 1606.00241.
Derondeau G. et al. (2016), Fermi surface and effective masses in photoemission response of the (Ba1−xKx)Fe2As2 superconductor, in
arXiv, 1606.08977.
Bisti F. et al. (2016), On-site electron correlation nature of CrO2 revealed by bulk sensitive soft-x-ray ARPES, in
arXiv, 1607.01703.
Rogalev V. A., Gröning O., Widmer R., Dil J. H., Bisti F., Lev L. L., Schmitt T., Strocov V. N. (2015), Fermi states and anisotropy of Brillouin zone scattering in the decagonal Al–Ni–Co quasicrystal, in
Nature Communications, 6(1), 8607-8607.
Lv B. Q., Xu N., Weng H. M., Ma J. Z., Richard P., Huang X. C., Zhao L. X., Chen G. F., Matt C. E., Bisti F., Strocov V. N., Mesot J., Fang Z., Dai X., Qian T., Shi M., Ding H. (2015), Observation of Weyl nodes in TaAs, in
Nature Physics, 11(9), 724-727.
Krempasky J. et al. (2015), Surface versus bulk contributions to the giant Rashba splitting in the ferroelectric α-GeTe(111) semiconductor, in
arXiv.org (in review with Phys. Rev. Lett.), 1503.05004.
Strong electron correlations in condensed matter give rise to a variety of interesting and practically important phenomena such as high-temperature superconductivity, quantum instabilities like charge and spin density waves, etc. Although the strength of electron correlations in general decreases with increase of dimensionality, there is an abundance of three-dimensional (3D) systems where the correlations play a crucial role, for example, the perovskite La1-xSrxMnO3 showing colossal magnetoresistance.Angle-resolved photoelectron spectroscopy (ARPES) is the main experimental tool to explore the electronic structure with resolution in 3D momentum k. Most important benefits of pushing the ARPES experiment into the soft-X-ray energy range around 1 keV are (1) increase in the photoelectron escape depth, resulting in a boost of bulk sensitivity, and (2) concomitant improvement in the intrinsic definition of the surface-perpendicular momentum. Until recently the development of soft-X-ray ARPES (SX-ARPES) was impeded by a drop of the photoexcitation cross-section by 2-3 orders of magnitude compared to the conventional ARPES. We are breaking through this problem using the soft-X-ray ADRESS beamline at Swiss Light Source (SLS) delivering exceptionally high photon flux. We illustrate the power of SX-ARPES performed with our advanced instrumentation with a few examples, demonstrating the probing depth increase, unparalleled definition of the 3D electronic structure, disentangling correlation phenomena in the bulk and resonant photoemission to identify the elemental character of the bands.Here, we propose to apply SX-ARPES to a few 3D correlated systems: (1) NiO as a paradigm strongly correlated charge-transfer insulator, where we expect to resolve the spectral weight of the Ni and O states in 3D as well as find spectroscopic evidences of the antiferromagnetic (AFM) order; (2) Chromium as a paradigm 3D spin-density-wave (SDW) metal, where we aim understanding of the electronic structure precursors of the SDWs; (3) Pnictides of the BaFe2As2 family, where disentanglement of peculiar matrix elements will allow unambiguous determination of the 3D effects, and spin-resolved measurements bring first information on the AFM order. In a broader perspective, our research will improve the fundamental knowledge about the effects of the third dimension in the physics of electron correlations. We hereby apply for funds to hire a postdoc researcher as a prime investigator in the framework of this proposal.