Project

Back to overview

Paraglacial Rock Slope Mechanics (Phase II)

English title Paraglacial Rock Slope Mechanics (Phase II)
Applicant Löw Simon
Number 146593
Funding scheme Project funding
Research institution Geologisches Institut ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Other disciplines of Earth Sciences
Start/End 01.10.2013 - 31.03.2017
Approved amount 456'874.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Earth Sciences
Hydrology, Limnology, Glaciology

Keywords (4)

Landslide; Monitoring; Rockslope; Glacier

Lay Summary (German)

Lead
"Am Ende der Eiszeit fanden, ausgelöst durch den Rückzug der Talgletscher, viele Bergstürze statt". Diese Hypothesen sind weitverbreitet aber wenig wissenschaftlich untersucht und möglicherweise auch falsch.In diesem Projekt werden im Gebiet des grossen Aletschgletschers diese Hypothesen überprüft und die Interkationen zwischen Talgletschern, ihren Schmelzwässern und Temperaturen mit den umgebenden Talflanken im Detail untersucht.
Lay summary
"Am Ende der Eiszeit fanden, ausgelöst durch den Rückzug der Talgletscher, viele Bergstürze statt". Diese Hypothesen sind weitverbreitet aber wenig wissenschaftlich untersucht und möglicherweise auch falsch. Da auch heute die Gletscher stark zurückschmelzen und im Zuge des anthropogen verursachten Klimawandels sich noch weiter zurückziehen werden, hat diese Frage noch zusätzlich an Aktualität gewonnen.
In diesem Projekt werden im Gebiet des grossen Aletschgletschers die Interkationen zwischen Talgletschern, ihren Schmelzwässern und Temperaturen mit den umgebenden Talflanken im Detail untersucht. Die Arbeiten umfassen umfangreiche Messungen von kleinsten Deformationen an der Geländeoberfläche und in Bohrungen, welche mit möglichen Ursachen (Umweltfaktoren) verglichen werden. Solche Ursachen sind zyklische Druckschwankungen von Schmelzwässern an der Basis des grossen Aletschgletschern oder variable Grundwasserneubildungsraten und Temperaturen an den eisfreien Talflanken. Durch ein verbessertes Verständnis dieser physikalischen Zusammenhänge zwischen Riederfurka und Märjeleseekönnen anschliessend die langfristige Entwicklung dieser Talflanken seit der letzten Eiszeit vor 20'000 Jahren sowie die Entstehung von Instabilitäten (Rutschungen, Bergstürze) in geologischen Zeiträumen verstanden und erklärt werden.
Direct link to Lay Summary Last update: 11.09.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland
Glueer Franziska, Loew Simon, Manconi Andrea (2019), Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland, in Geomorphology, 1-19.
Thermomechanical Stresses Drive Damage of Alpine Valley Rock Walls During Repeat Glacial Cycles
Grämiger Lorenz M., Moore Jeffrey R., Gischig Valentin S., Loew Simon (2018), Thermomechanical Stresses Drive Damage of Alpine Valley Rock Walls During Repeat Glacial Cycles, in Journal of Geophysical Research: Earth Surface, 123(10), 2620-2646.
Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles
Graemiger L., Moore J.R., Gischig V.S., Ivy-Ochs S., Loew S. (2017), Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles, in Journal of Geophysical Research: Earth Surface , 1004-1036.
Multidisciplinary monitoring of progressive failure processes in brittle rock slopes.
Loew S., Gischig V., Glueer F., Seifert R., Moore J. (2017), Multidisciplinary monitoring of progressive failure processes in brittle rock slopes., in Feng Xia-Ting, Hudson John A (ed.), CRC Press, Balkema, 629-662.
Near-surface rock stress orientations in alpine topography derived from exfoliation fracture surface markings and 3D numerical modelling
Ziegler Martin, Loew Simon, Amann Florian (2016), Near-surface rock stress orientations in alpine topography derived from exfoliation fracture surface markings and 3D numerical modelling, in International Journal of Rock Mechanics and Mining Sciences, 85, 129-151.
Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps)
Ziegler Martin, Loew Simon, Bahat Dov (2014), Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps), in Tectonophysics, 626, 1-20.
Distribution and inferred age of exfoliation joints in the Aar Granite of the central Swiss Alps and relationship to Quaternary landscape evolution
Ziegler Martin, Loew Simon, Moore Jeffrey R. (2013), Distribution and inferred age of exfoliation joints in the Aar Granite of the central Swiss Alps and relationship to Quaternary landscape evolution, in Geomorphology, 201, 344-362.

Collaboration

Group / person Country
Types of collaboration
ETHZ-VAW Glaciology Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
ETHZ-Geodesy Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
ETHZ-Particle Physics Switzerland (Europe)
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EGU Meeting 2017 Talk given at a conference Unravelling detailed kinematics of DSGSD morphostructures (Moosfluh, Swiss Alps) 23.04.2017 Wien, Austria Löw Simon; Glüer Franziska;
EGU Meeting 2017 Talk given at a conference Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation. 23.04.2017 Wien, Austria Glüer Franziska; Löw Simon;
EGU Meeting 2017 Talk given at a conference Rapid evolution of the paraglacial Moosfluh rock slope instability (Swiss Alps) captured by Sentinel-1 23.04.2017 wien, Austria Löw Simon; Glüer Franziska;
EGU Meeting 2015 Poster Hydro-Mechanical Interactions between the Great Aletsch Glacier and the Driest Landslide (Switzerland) 12.04.2017 Wien, Austria Glüer Franziska; Löw Simon;
EGI Meeting 2016 Poster Paraglacial rock mass damage during repeat glacial cycles in preparing slope instabilities (Aletsch region, Switzerland) 17.04.2016 Wien, Austria Grämiger Lorenz; Löw Simon; Moore Jeffrey R.;
EGU Meeting 2015 Poster Cyclic fatigue testing for application for paraglacial rock slope stability modellin 12.04.2015 Wien, Austria Löw Simon; Moore Jeffrey R.; Grämiger Lorenz;
EGU Meeting 2015 Poster Thermo-hydro-mechanical stresses during repeat glacial cycles as preparatory factors for paraglacial rock slope instabilities 12.04.2015 Wien, Austria Grämiger Lorenz; Löw Simon;
EGU Meeting 2015 Talk given at a conference Design and operation of a comprehensive and permanent rock slope deformation monitoring system at the Great Aletsch Glacier (Switzerland). 12.04.2015 Wien, Austria Löw Simon; Glüer Franziska;
Third Slope Tectonics conference Talk given at a conference Beyond debuttressing: thermo-hydro-mechanical stresses and induced rock mass damage during repeat glacial cycles 08.09.2014 Trondheim, Norway Löw Simon; Grämiger Lorenz;
EGU Meeting 2014 Poster Groundwater flow systems in the great Aletsch glacier region (Valais, Switzerland) 27.04.2014 Wien, Austria Löw Simon;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
CAS Exkursion Hanginstabilität Moosfluh Workshop 13.09.2018 Riederalp, Switzerland Moore Jeffrey R.; Löw Simon; Glüer Franziska;
Dramatische Reaktion einer grossen Hanginstabilität auf den Rückzug des Grossen Aletschgletschers seit der kleinen Eiszeit Talk 12.09.2018 Riederalp, Switzerland Glüer Franziska; Löw Simon;
ETH Tag 2016 Talk 19.11.2016 Zürich, Switzerland Glüer Franziska; Löw Simon;
Krisensitzung Hangrutsch Moosfluh Talk 22.09.2016 Mörel Gemeindezentrum, Switzerland Glüer Franziska; Löw Simon;
Gefahrenkommision Silbersand Talk 17.09.2015 Naters Gemeindezentrum, Switzerland Glüer Franziska; Löw Simon;


Self-organised

Title Date Place
Darstellung unserer Forschungsergebnisse für Mitarbeiter des Unesco Welterbe Zentrums Pro Natura Grosser Aletschgletscher 01.06.2014 Villa Cassel Riderfurka, Switzerland

Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) Aletsch - Der grösste Gletscher der Alpen International German-speaking Switzerland 2016
Media relations: print media, online media Der Gletscher schlägt zurück NZZ Sonntag German-speaking Switzerland 2016
Media relations: print media, online media Guten Rutsch Süddeutsche Zeitung International 2016

Associated projects

Number Title Start Funding scheme
170746 Long-term damage evolution in brittle rocks subject to controlled climatic conditions 01.12.2016 R'EQUIP
135184 Paraglacial Rock Slope Mechanics 01.06.2011 Project funding
172492 Paraglacial Rock Slope Mechanics (Phase III) 01.04.2017 Project funding

Abstract

Cycles of glacial erosion and retreat expose Alpine valley rock walls in an oversteepened, meta-stable state. The subsequent rock slope response will vary with changing in-situ stress conditions, material properties, slope geometry and local environmental conditions, and may include generation of new fractures, gravitational deformation, or catastrophic collapse. Although paraglacial rock slope failures are among the fastest and most dramatic elements of the landscape response to erosion and deglaciation, large unknowns remain relating to key themes of underlying failure processes, controlling parameters, and instability distributions. This proposal is part of a comprehensive research plan aimed to critically evaluate the response and instability characteristics of rock walls subjected to glacial erosion and debuttressing associated with repeated cycles of Quaternary glaciation. We bring a solid background in landslide analysis, rock mechanics and rock slope hydraulics, and focus our attention specifically on complex interactions between valley glaciers, rock slopes, and the local Alpine environment. The long term research plan considers three main time scales and slope reactions in detail, which are treated in separate but interrelated PhD projects, i.e. PhD 1: Pleistocene glacial erosion and exfoliation fracturing in massive rocks, PhD 2: Late Glacial and Holocene rock slope response and cyclic THM rock mass damage, and PhD 3: On-going THM rock slope response related to recent glacial retreat. In this current proposal, which is Phase II of this multi-phase research project, we focus on the second two PhD projects above - Lateglacial and ongoing rock slope response, with emphasis on THM coupled processes. The study area selected for this project is the UNESCO World Heritage region of the Grossser Aletsch glacier in the Central Alps.The primary objective of PhD project 2 is to explore the role of coupled thermo-hydro-mechanical (THM) stress changes in driving long-term progressive failure and conditioning of paraglacial rock slope instabilities. We posit a model of THM stress changes where each response mechanism is tied to the changing glacier ice extents and thicknesses, and therefore stress changes and resulting rock mass damage are predicted in both space and time. We build from our own previous research experience in this area and further develop THM damage concepts in the paraglacial framework of long term cyclic glacial forcing. This work is strongly based on field investigations in the Aletsch glacier area compiling landslide distributions, rock mass strength properties, and reconstructed Lateglacial and Holocene ice extents. Detailed insights into current ground deformations, temperature variations, sub-glacial water pressure and bedrock groundwater conditions will result from co-operations with PhD project 3. Numerical modeling will then be used to synthesize and explore the hypothesized THM long term damage processes, and results compared with the mapped distributions and types of slope failures.The goal of PhD project 3 is to relate in-situ measurements of ongoing discontinuous rock mass deformation to coupled THM processes in an actively deglaciating landscape. Coupling between sub-glacial water pressures, rockslope pore pressures, climatic variables and transient rock mass deformations will be rigorously investigated at a new test site in stable bedrock on the glacier margin at Märjelesee (Lake Märjele, see Fig. 3), supported by detailed 3D structural investigations and numerical modeling of the test site. Borehole based monitoring at this new in-situ rock mechanics laboratory near Märjelesee will initiate new discoveries into paraglacial rock mass behavior and will be complemented by surface based monitoring at stable slopes and active rock slopes instabilities (Driest and Moosfluh) near the Aletsch glacier tongue. Contrasting these two settings will also help us distinguish coupled THM forcing factors driving active and irreversible slope moments versus those creating elastic deformations and/or incremental damage to a rock slope through time.
-