Project

Back to overview

Studies to unravel the mechanism of novel silicone 1-D nanofilaments formation

English title Studies to unravel the mechanism of novel silicone 1-D nanofilaments formation
Applicant Seeger Stefan
Number 146421
Funding scheme Project funding
Research institution Institut für Physikalische Chemie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Physical Chemistry
Start/End 01.06.2013 - 31.05.2015
Approved amount 109'520.00
Show all

Keywords (4)

silicone; nanotubes; nanofilaments; surface chemistry

Lay Summary (German)

Lead
Nanostrukturen sind Strukturen mit einer Grösse von einigen millionstel Millimetern in wenigstens zwei Dimensionen. In unserer Gruppe wurden erstmals Nanofilamente synthetisiert, die auf Oberflächen zu extrem wasser- und ölabweisenden Eigenschaften führen.
Lay summary

Das sehr einfache Verfahren basiert auf der Herstellung von Silikon, einem chemisch weitgehend inerten und ungefährlichen Material. Da auch die Herstellung sehr kostengünstig ist, gelten Silikonnanofilamente als vielversprechender Ansatz, Oberflächen in Bezug auf Wasser und Ölabweisung, sowie Selbstreinigung zu modifizieren.

Bislang ist der Mechanismus der Nanofilamentbildung weitgehend unklar. Es ist lediglich bekannt, dass eine gewisse Feuchtigkeit erforderlich ist. Auch kann man die Nanofilamente in der Gasphase und der flüssigen Phase erzeugen. Da bei beiden Prozessen praktisch gleichaussehende Filamente entstehen, liegt vermutlich ein prinzipiell gleicher Mechanismus vor.

Im Rahmen dieses Projektes sollen wesentliche Erkenntnisse gewonnen werden, um einen Synthesemechanismus der Nanofilamente vorschlagen zu können. Als analytische Methode soll insbesondere die Rasterelektronenmikroskopie und die Transmissionselektronenmikroskopie zum Einsatz kommen.

 

 

 

Im Rahmen dieses Projektes sollen wesentliche Erkenntnisse gewonnen werden, um einen Synthesemechanismus der Nanofilamente vorschlagen zu können. Als analytische Methode soll insbesondere die Rasterelektronenmikroskopie und die Transmissionselektronenmikroskopie zum Einsatz kommen.

 

Direct link to Lay Summary Last update: 29.05.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible
Möller Isabelle, Seeger Stefan (2015), Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible, in Journal of Materials Chemistry B, 3, 6046-6056.
α‑Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X‑ray Reflectivity
Hähl Hendrik, Möller Isabelle, Kiesel Irena, Campioni Silvia, Riek Roland, Verdes Dorinel, Seeger Stefan (2014), α‑Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X‑ray Reflectivity, in ACS Chemical Neuroscience, 6, 374-379.

Collaboration

Group / person Country
Types of collaboration
Prof. Dr. Roland Riek, Lab. für Physikalische Chemie, ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Dr. Kazuhiko Ishihara, Center for NanoBio Integration, University of Tokyo Japan (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Prof. Dr. Nicholas Spencer, Professur für Oberflächentechnik, ETH Zürich Switzerland (Europe)
- Research Infrastructure
Prof. Dr. Jürg Osterwalder, Physik Institut, Universität Zürich Switzerland (Europe)
- Research Infrastructure

Associated projects

Number Title Start Funding scheme
134859 Studies to unravel the mechanism of novel silicone nanofilament formation 01.04.2011 Project funding
134859 Studies to unravel the mechanism of novel silicone nanofilament formation 01.04.2011 Project funding
159916 1-Dimensional Synthesis of Polysiloxane Nanostructures 01.06.2015 Project funding

Abstract

Nanostructures on surfaces are of great interest in chemistry and material science, because they are the key to completely changed surface properties, in particular extreme wetting behaviour, like superhydrophobicity, superhydrophilicity or superoleophobicity. However, there is nearly no technology available combining the most important parameters, e.g. simple process technology, invisibility, lacking influence on the haptic of the substrate, no toxicity, and low costs available. Our group has developed a silicone based in situ coating from the gas phase and meanwhile even from liquid phase which meet such requirements and has a clear potential to be applied in a couple of products in the daily life.Contrary to the widespread use of silicones much less is known about this material on nanoscale. Spherical colloidal particles are known for more than 40 years, but 1-D nanostructures such as filaments, wires and tubes on micro- and macroscopic surfaces have been discovered only recently. The mechanism of their formation is still unclear. In the proposed project we intend to unravel the mechanism of this unusual polymerization process by basic studies in steady state and dynamic mode. First part is the experimental access to the relevant parameters, for formation of different 1-D nanostructures, such as water content, temperature, silane concentration and many others. Once when this data set is obtained systematically, the second part is dedicated to investigate how and where polymerization takes place during the reaction. During this part will perform experiments with salts used as “markers” to determine where the growth takes place during polymerization reaction. Furthermore, we will design small volume reaction chamber where we will measure temperature change on the surface where reaction occurs in situ. This will give us information about the reaction heat and also kinetic data for different precursors.The extremely cheap synthesis and the lacking toxicity of silicone material make this nanostructures very attractive for many applications. In particular to tailor the shape of the nanoparticles-from discs to tubes to filaments- is scientifically exciting and bears undoubtful tremendous potential for nano- and material science.
-