Project

Back to overview

Light-matter interaction from first principles: new developments in nonadiabatic dynamics with applications in energy (production, saving, storage) and medical research

Applicant Tavernelli Ivano
Number 146396
Funding scheme Project funding (Div. I-III)
Research institution IBM Research GmBH
Institution of higher education EPF Lausanne - EPFL
Main discipline Physical Chemistry
Start/End 01.04.2013 - 30.11.2016
Approved amount 208'672.00
Show all

All Disciplines (4)

Discipline
Physical Chemistry
Material Sciences
Other disciplines of Physics
Inorganic Chemistry

Keywords (11)

First-principles excited state dynamics; Density functional theory; Photo-induced water splitting; Spin-orbit couplings and intersystem crossing; OLED technology; Photo-induced drug delivery; Nuclear quantum (de-)coherence and dephasing; Time dependent density functional theory; Energy production; Cancer therapy; Nonadiabatic dynamics

Lay Summary (French)

Lead
Interaction entre la lumière et la matière à partir de principes premiers: nouveaux développements en dynamique non-adiabatique avec applications à l'énergie (production, économie et stockage) et à la recherche médicale.
Lay summary

L'objectif principal de ce projet est d'améliorer et de dériver des nouveaux moyens théoriques, basés sur les principes premiers de la mécanique quantique, pour l'étude de l'interaction entre la lumière (notamment les radiations solaires) et des dispositifs moléculaires ou à l'état solide pouvant être utilisés pour la production et le stockage d'énergie . Nous avons récemment montré que des calculs de structure électronique pour l'obtention de propriétés de l'état fondamental et d'états excités, basés sur la théorie de la fonctionnelle de la densité (DFT) et la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT), peuvent être combinés à des méthodes de dynamique moléculaire (MD) non-adiabatique afin de décrire divers phénomènes photophysiques et photochimiques en solution ou à l'état solide. Dans la première partie de ce projet nous visons à développer d'avantage notre méthode de MD avec des trajectoires avec sauts de surface (TSH), basée sur la TDDFT, qui atteint un bon équilibre entre la précision et l'efficacité numérique. Tous les logiciels développés seront mis à disposition de la communauté scientifique gratuitement, sur le site www.cpmd.org.

En plus du développement théorique décrit précédemment, le projet comporte aussi un partie d'application de la théorie à deux problèmes majeurs liés à la conversion d'énergie solaire et à l'économie d'énergie. En premier lieu nous allons nous intéresser à la conception de nouveaux dispositifs pour le craquage de l'eau, et en particulier au « design » de catalyseurs pour la production d'hydrogène à partir de l'énergie solaire. Nous allons aussi nous intéresser au développement de technologies d'éclairage plus efficaces basées sur les diodes électroluminescentes organiques (OLEDs), notamment ceux basés sur les complexes d'iridium, dont nous visons à optimiser le spectre d'absorption et émission (« spectral tuning »).

Direct link to Lay Summary Last update: 08.04.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook
Lara-Astiaso Lara, Ayuso David, Tavernelli I, Decleva piero, Palacios Alicia, Martin Fernando (2016), Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook, in faraday Discussions, 194, 41.
Conditional Born–Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine
Albareda Guillelmio, Bofill Josep M., Tavernelli Ivano, Huarte-Larranaga Fermin, Illas Francesc, Rubio Angel (2015), Conditional Born–Oppenheimer Dynamics: Quantum Dynamics Simulations for the Model Porphine, in J. Phys, Chem. Lett., 6, 1529.
Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited‐State Proton Transfer of 4‐Hydroxyacridine
Curchod Basile, Penfold Thomas J., Rothlisberger Ursula, Tavernelli Ivano (2015), Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited‐State Proton Transfer of 4‐Hydroxyacridine, in ChemPhysChem, 16, 2127.
Nonadiabatic dynamics with intersystem crossing: A time-dependent density functional theory implementation
Franco de Carvalho Felipe, Tavernelli I (2015), Nonadiabatic dynamics with intersystem crossing: A time-dependent density functional theory implementation, in The Journal of Chemical Physics, 143, 224105.
Nonadiabatic molecular dynamics simulations: Synergies between theory and experiments
Tavernelli Ivano (2015), Nonadiabatic molecular dynamics simulations: Synergies between theory and experiments, in Accounts of Chemical Research, 48, 792.
Probing wavepacket dynamics using ultrafast x-ray spectroscopy
Capano Gloria, Milne Chris, Rothlisberger Ursula, Chergui Majed, Tavernelli Ivano, Penfold Thomas J. (2015), Probing wavepacket dynamics using ultrafast x-ray spectroscopy, in Journal of Physics B, 48, 214001.
Derivation of spin-orbit couplings in collinear linear response TDDFT: A rigorous folmulation
Franco de Carvalho Felipe, Curchod Basile F.E., Penfold Thomas J., Tavernelli Ivano (2014), Derivation of spin-orbit couplings in collinear linear response TDDFT: A rigorous folmulation, in The journal of Chemical Physics, 140, 144103.
Nonadiabatic molecular dynamics based on trajectories
Franco de Carvalho Felipe, Bouduban Marine E. F., Curchod Basele F. E., Tavernelli Ivano (2013), Nonadiabatic molecular dynamics based on trajectories, in Entropy, 62-85.

Collaboration

Group / person Country
Types of collaboration
Prof. Majed Chergui, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Group of Dr. Etienne Baranoff at University of Birmingham Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Prof. Fernando Martin, Universitad Autonoma de Madrid Spain (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Alessandro Curioni, IBM, Zuerich Switzerland (Europe)
- Industry/business/other use-inspired collaboration
Prof. Giovanni Ciccotti, Dep. of Physics University of Rome "La Sapienza", Rome Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Seminar at the Department de Quimica Fisica and Institut de Quimica Teorica i Computational. Talk given at a conference TDDFT-based mixed quantum-classical dynamics 17.11.2016 Barcelona, Spain Tavernelli Ivano;
7th International school and workshop on TDDFT Talk given at a conference TDDFT-based nonadiabatic molecular dynamic with relativistic e ects 12.09.2016 Benasque, Spain Tavernelli Ivano;
CECAM Workshop on ultrafast phenomena Talk given at a conference TDDFT-based nonadiabatic molecular dynamic for ultrafast phenomena 11.04.2016 Lausanne, Switzerland Tavernelli Ivano;
XLIC Conference, Queen's University Talk given at a conference TDDFT-based local control theory: controlling molecular reactions 10.04.2016 Belfast, Ireland Tavernelli Ivano;
APS March meeting Talk given at a conference Nonadiabatic dynamics with spin-orbit couplings 10.03.2016 Baltimore, United States of America Tavernelli Ivano;
Thomas Young Center Colloquia Talk given at a conference Nonadidbatic quantum dynamics with CPMD 03.03.2016 London, Great Britain and Northern Ireland Tavernelli Ivano;
Seminar at the Condensed Matter & Statistical Physics Section, ICTP Talk given at a conference TDDFT-based mixed quantum-classical dynamics 02.12.2015 Trieste, Italy Tavernelli Ivano;
Swiss Chemical Society, Fall meeting 2015 Talk given at a conference Molecular Dynamics with inter-system crossing and nonadiabatic effects 04.09.2015 EPFL Lausanne, Switzerland Miraglia Franco de Carvalho Felipe; Tavernelli Ivano;
Summer School of the Max-Planck-EPFL Center for Molecular Nanoscience and Technology Talk given at a conference Trajectory-based nonadiabatic molecular dynamics: A TDDFT approach 27.07.2015 Schloss Ringberg, Germany Tavernelli Ivano;
Psi-k 2015 Conference (Invited talk). Talk given at a conference TDDFT-based nonadiabatic dynamics with relativistic e ects 15.06.2015 San Sebastian, Spain Tavernelli Ivano;
CECAM workshop on \Molecular Quantum Dynamics Methods: Benchmarks and State of the Art". Talk given at a conference Nonadiabatic dynamics with trajectories 15.06.2015 Lausanne, Switzerland Tavernelli Ivano;
C4 Seminar Talk given at a conference Nonadiabatic dynamics of complex molecular systems using time-dependent density functional theory 06.11.2014 Zurich, Switzerland Tavernelli Ivano;
Workshop at the European Theoretical Spectroscopy Facility (ETSF) Talk given at a conference TDDFT-based nonadiabatic molecular dynamics with relativistic e ects 23.09.2014 Zaragoza, Spain Tavernelli Ivano;
Science@FELs 2014 conference. PSI Poster Inter-system crossing and internal conversion with TDDFT 15.09.2014 Villigen, Switzerland Miraglia Franco de Carvalho Felipe; Tavernelli Ivano;
50th Symposium on Theoretical Chemistry Talk given at a conference TDDFT-based nonadiabatic molecular dynamics with relativistic e ects 14.09.2014 Vienna, Austria Tavernelli Ivano;
Swiss Chemical Society, Fall meeting 2014 Poster Inter-system crossing with TDDFT: Jablonski diagrams from theory 11.09.2014 ETH Zurich, Switzerland Miraglia Franco de Carvalho Felipe; Tavernelli Ivano;
Max-Planck Institute workshop on excited state dynamics Talk given at a conference Nonadiabatic dynamics with trajectories 16.07.2014 Halle, Germany Tavernelli Ivano;
TSRC workshop on Excited States. Talk given at a conference TDDFT-based nonadiabatic dynamics with relativistic e ects 13.07.2014 Telluride (CO), United States of America Tavernelli Ivano;
Conference on New Frontiers in Multiscale Modelling of Advanced Materials Talk given at a conference Nonadiabatic dynamics and material design 17.06.2014 Trento, Italy Tavernelli Ivano;
CECAM workshop on \Recent progress in adiabatic and non-adiabatic methods in quantum dynamics Talk given at a conference Electron-phonon coupling from time-dependent density functional theory 12.05.2014 Lausanne, Switzerland Tavernelli Ivano;
COST Action MP 1006 workshop Talk given at a conference Nonadiabatic molecular dynamics with classical and quantum trajectories 05.05.2014 Bad Hamburg, Germany Tavernelli Ivano;
APS March meeting Talk given at a conference TDDFT-based local control theory: controlling molecular reactions 09.03.2014 Baltimore, United States of America Tavernelli Ivano;
6th Time-Dependent Density-Functional Theory workshop and school Prospective and Applications. Talk given at a conference Nonadiabatic dynamics and local control theory 04.01.2014 Benasque, Spain Tavernelli Ivano;
Time-Dependent Density-Functional Theory: Prospects and Applications, 6th International Workshop and School Poster Spin-orbit coupling with TDDFT 04.01.2014 Benasque , Spain Tavernelli Ivano; Miraglia Franco de Carvalho Felipe;
Seminar at the Physics Department of the University of Milano Talk given at a conference TDDFT-based nonadiabatic dynamics of complex molecular systems 18.12.2013 Milan, Italy Tavernelli Ivano;
COST Action XLIC. WG2 meeting Talk given at a conference TDDFT-based nonadiabatic dynamics of complex molecular systems 27.04.2013 Fruska Gora, Serbien Tavernelli Ivano;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
CECAM workshop on \Molecular Quantum Dynamics Methods: Benchmarks and State of the Art" Talk 12.06.2015 Lausanne, Switzerland Tavernelli Ivano;


Abstract

The principal aim of this project is to improve on and to derive new theoretical first-principles techniques for the investigation of the interaction of light (and in particular the solar radiation) with molecular and solid state devices that can be used for energy production and conversion, or that can replace old, energy inefficient apparatus. Recently, we showed that density functional theory (DFT) and time-dependent DFT (TDDFT) based electronic structure calculations for ground and excited state properties combined with suitable nonadiabatic molecular dynamics (MD) schemes offer an adequate description of many types of photochemical and photophysical processes in both solution and the solid phase. Therefore, in the first part of this project we plan to further develop our recently proposed TDDFT-based trajectory surface (TSH) molecular dynamics (MD) scheme [1], which offers an advantageous balance of accuracy and numerical efficiency. Among others, the main developments include: (i) a theory for the calculation of spin-orbit couplings in the framework od DFT and TDDFT, (ii) the implementation of more accurate DFT functionals and TDDFT kernels, and (iii) the design of a model for the coupling of the electronic and quantum nuclear degrees of freedom with the environment that goes beyond the classical QM/MM scheme and that therefore allows the study of phenomena like quantum dephasing and entanglement. Furthermore, in order to improve the description of the nuclear quantum effects within this formalism, we propose a new theoretical development based on quantum hydrodynamics (or quantum Bohmian dynamics), which introduces quantum (de-)coherence between the ‘quantum’ trajectories used to propagate the nuclear wavefunction. Starting from our recent development in reference [2], we plan to extend our TDDFT-based nonadiabatic Bohmian dynamics MD scheme to treat realistic systems of the size and complexity that are relevant for the applications addressed in this proposal. All this theoretical and software development will be made available to the scientific community, free of charge, from the address: www.cpmd.org [3].In parallel to the theoretical development, we will also address two main problems related to solar energy conversion and energy-saving, namely the design of improved light-induced water splitting devices and development of more efficient illumination technologies based on organic light-emitting-diodes (OLED). Instead of the direct conversion of solar energy into electric power (by means of a solar cell device), it was proposed to store this energy in chemical form, for instance, with the production of molecular hydrogen (H2). The simplest way to achieve such an energy conversion is by splitting water using solar radiation. To run this process efficiently, robust water oxidation catalysts are required to produce oxygen efficiently, that is, with high rates and using only a small (or better no) over-potential. The design of better catalysts is therefore key to the development of this technology and the use of adequate and predictive theoretical methods (like the ones developed in this proposal) is of enormous importance. Concerning energy-saving, our aim is to improve and design new kinds of OLEDs (mainly based on iridium dopants, but not exclusively) with desired absorption and emission properties and protection against photodegradation. By means of a theoretical investigation it is possible to optimally tune the absorption spectrum of a compound by selective mutation of the ligands attached to the central metal (spectral tuning). In conjunction with nonadiabatic MD it will be possible to shed lights on the excited state dynamics identifying for instance, intersystem crossings (via spin-orbit coupling), and also to locate potential energy minima on the excited PESs from which the OLED is emitting. Finally, we believe that the advanced theoretical tools we have developed so far will allow us to address, with new insights, another major challenge facing our society in the domain of public health: cancer therapy. The purpose of this study is the design of a new class of anti-cancer drugs based upon the combination of nanoparticles with light-induced drug delivery. Nanoparticle accumulate in tumor tissue thanks to the defective angiogenesis of cancer tissues. Combining this efficient drug delivery vector with a cytotoxic drug that can be released upon irradiation with tunable light (in the UV of X-ray range) it is possible to obtain a new powerful nano-technological device that can selectively kill tumors. [1] E. Tapavicza, I. Tavernelli, and U. Rothlisberger, “Trajectory surface hopping within linear response time-dependent density-functional theory”, Phys. Rev. Lett. , 98, 023001 (2007).[2] I. Tavernelli, “Ab initio-driven trajectory-based quantum dynamics in phase space”, submitted to Phys. Rev. A, June 2012.[3] CPMD, http://www.cpmd.org. Copyright IBM Corp. 1990-2008, ?Copyright MPI für Festkörperforschung Stuttgart 1997-2001.
-