Project

Back to overview

Advancing U-Pb high temperature thermochronology by combining single grain and intra-grain dating

Applicant Spikings Richard A.
Number 146332
Funding scheme Project funding
Research institution Département des sciences de la Terre Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Geochronology
Start/End 01.04.2013 - 31.03.2017
Approved amount 321'730.00
Show all

All Disciplines (4)

Discipline
Geochronology
Geology
Mineralogy
Other disciplines of Earth Sciences

Keywords (5)

Geodynamic evolution; U-Pb thermochronology; Geochronology; Northern Andes; Diffusion

Lay Summary (French)

Lead
Le but principal de cette étude est d’améliorer la compréhension et la méthodologie de la thermochronologie U-Pb de haute température, en l’appliquant à des minéraux accessoires extraites de roches cristallines, et en modélisant les données U-Pb pour générer des histoires thermiques pour des températures >350°C. Les techniques thermochronologiques contribuent d’importantes connaissances aux processus géologiques. La plupart de ces techniques sont sensibles à des températures faibles (<350°C).
Lay summary

Buts

i) Améliorer la thermochronologie de haute température U-Pb en l’appliquant à des minéraux accessoires extraites de roches cristallines Mésozoiques, et en modélisant les données U-Pb pour générer des histoires thermiques pour des températures plus élevées que 350°C.

ii)  Tester l’hypothèse que l’isotope fils (Pb) est émis des minéraux accessoires par diffusion volumétrique, en fonction de la température.

iii) Déterminer les durées d’extension continentale qui ont mené au rifting et à la génération de la lithosphère océanique de la Téthys Occidental.

 

Innovation

i) Combiner des datations U-Pb de cristaux d’apatite, rutile et de titanite (ID-TIMS) avec des datations in-situ (LA-MC-ICP-MS) sur les mêmes minéraux, qui peuvent être utilisés pour reconstruire des histoires thermiques théoriques, et evaluer l’exactitude de ces reconstructions.

ii) Reconstruire des histoires thermiques par inversion numérique des âges et des tailles des grains.

iii) Appliquer cette méthodologie à des roches Phanérozoiques, pour lesquelles l’obtention d’âges précis sur des minéraux pauvres en Pb radiogénique, représente un défi analytique.

Direct link to Lay Summary Last update: 02.04.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study
Paul Andre N., Spikings Richard A., Chew David, Daly J. Stephen (2019), The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study, in Geochimica et Cosmochimica Acta, 251, 15-35.
High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U-Pb thermochronology
Paul Andre N., Spikings Richard A., Ulianov Alexey, Ovtcharova Maria (2018), High temperature (>350 °C) thermal histories of the long lived (>500 Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U-Pb thermochronology, in Geochimica et Cosmochimica Acta, 228, 275-300.
The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma)
Spikings R, Cochrane R, Villagomez D, Lelij R, Vallejo C, Winkler W, Beate R (2015), The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290-75 Ma), in Gondwana Research, (1), 95-139.
Distinguishing between in-situ and accretionary growth of continents along active margins
Cochrane R, Spikings R, Gerdes A, Winkler W, Ulianov A, Mora A, Chiaradia M (2014), Distinguishing between in-situ and accretionary growth of continents along active margins, in Lithos, 382-394.
Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea
Cochrane R, Spikings R, Gerdes A, Ulianov A, Mora A, Villagomez D, Putlitz B, Chiaradia M (2014), Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea, in Lithos, 383-402.
High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite
Cochrane R, Spikings R, Chew D, Wotzlaw J-F, Chiaradia M, Tyrrell S, Schaltegger U, Lelij R (2014), High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite, in Geochimica et Cosmochimica Acta, 382-394.

Collaboration

Group / person Country
Types of collaboration
Prof. David Chew, Dept. of Geology, Trinity College Dublin Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof Othmar Muntener, Institute of Mineralogy and Geochemistry, University of Lausanne Switzerland (Europe)
- Research Infrastructure
Prof. Richard Ketcham, Jackson School of Geosciences, University of Texas at Austin United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
European Geophysical Union Talk given at a conference Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers 28.04.2017 Vienna, Austria Paul Andre Navin; Spikings Richard A.;
European Geophysical Union Poster Along strike variations of high temperature (350-500°C) thermal histories along the northern Andean margin of South America 26.04.2017 Vienna, Austria Spikings Richard A.; Paul Andre Navin;
10th South American Symposium on Isotope Geology Talk given at a conference Developments in high-temperature thermochronology and its application to the tectonic history of northern South America 12.05.2016 Puerta Vallarta, Mexico Spikings Richard A.;
European Geophysical Union Talk given at a conference Apatite U-Pb thermochronology applied to complex geological settings - insights from geo/thermochronology and geochemistry 15.04.2016 Vienna, Austria Spikings Richard A.; Paul Andre Navin;
15th Geological Congress of Colombia Talk given at a conference The Tectonic Evolution of the Northern Andes from the disassembly of Pangaea to the collision of the Caribbean Large Igneous Province 15.09.2015 Bucaramanga, Colombia Spikings Richard A.;
Goldschmidt2015 Talk given at a conference High temperature thermochronology and the relationship between lead diffusion, composition and structural defects in apatite 10.08.2015 Prague, Czech Republic Spikings Richard A.; Paul Andre Navin;
14th INternational Conference on Thermochronology Poster High temperature thermochronology and the relationship between Pb diffusion and apatite composition 09.09.2014 Chamonix, France Spikings Richard A.; Cochrane Ryan;


Self-organised

Title Date Place
Workshop on Isotope Geochemistry and the Geology of the Northern Andes 02.03.2017 UNAL, Bogota, Colombia
Workshop on Isotope Geochemistry 03.05.2016 UIS, Bucaramanga, Colombia
Workshop on Isotope Geochemistry 03.08.2015 UIS, Bucaramanga, Colombia
SHort course on the Geology of Ecuador 03.02.2014 EPN, Quito, Ecuador

Associated projects

Number Title Start Funding scheme
160052 Advancing alkali feldspar and muscovite 40Ar/39Ar thermochronology 01.12.2015 Project funding
134443 Thermochronology and Tectonics of the Northern Andes (Colombia and Ecuador) 01.04.2011 Project funding

Abstract

The main aim of this study is to advance understanding and methodology of high-temperature U-Pb thermochronology, by applying it to accessory phases extracted from young (Mesozoic) crystalline rocks, and inverting U-Pb age data to generate continuous thermal history paths at temperatures higher than 350°C.This project will advance research into U-Pb thermochronology of titanite, apatite and rutile separated from Phanerozoic crystalline rocks, by combining i) ID-TIMS dates of a range of grain sizes, ii) laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) intra-grain dates, and iii) cathodoluminescence, back-scattered electron imaging and LA-ICP-MS trace element mapping to qualitatively and quantitatively constrain crystal heterogeneity, respectively.Thermochronological techniques have significantly contributed to our understanding of geological processes since the early 1970’s because they are capable of accurately quantifying variations in temperature, with time. Most techniques are sensitive to low temperatures (<350°C), and thus are limited to investigating the thermal histories of the upper crust. This study represents an important contribution to Earth Sciences because:i)High temperature (>350°C) U-Pb thermochronology provides earth scientists with a tool to generate continuous t-T paths for the lower and middle crust, which will significantly increase our understanding of a) how lower crustal rocks exhume to the surface (e.g. pure or simple shear during extension?), b) the tectonic stability of lower crust and cratons, and c) the tectonic history of active margins over long time periods (e.g. 500 Ma), during which they may have experienced numerous terrane collision events and a substantial quantity (e.g. >15km) of exhumation.ii)This will be the first study to combine ID-TIMS and LA-MC-ICP-MS ages of apatite, which can be used to derive theoretical thermal history paths, and assess the accuracy of those paths. Furthermore, corroboratory data from both techniques would confirm that Pb is lost by thermally activated diffusion, confirming the use of apatite U-Pb ages as thermochronometers.The Northern Andes will be used as the study region because they represent a superb natural laboratory to test the U-Pb thermochronological method. The tectonic history of the region has been extensively studied by the principal applicant and other authors, and numerous 40Ar/39Ar and lower temperature thermochronological constraints have been published. Previous studies that utilised the U-Pb thermochronological method applied it to Precambrian rocks. This study will be the first to apply it to Phanerozoic rocks, and will therefore face the challenge of generating sufficiently precise U-Pb ages from minerals with low ratios of radiogenic to common Pb.
-