Project

Back to overview

Cryogen Free Dilution Refrigerator for Circuit Optomechanical Experiments

English title Cryogen Free Dilution Refrigerator for Circuit Optomechanical Experiments
Applicant Kippenberg Tobias Jan
Number 144977
Funding scheme R'EQUIP
Research institution Institut de Photonique et d'Electronique Quantiques EPFL - SB - IPEQ
Institution of higher education EPF Lausanne - EPFL
Main discipline Other disciplines of Physics
Start/End 01.12.2013 - 30.11.2014
Approved amount 200'000.00
Show all

Keywords (1)

Cavity optomechanics

Lay Summary (German)

Lead
Im schnell wachsenden Feld der Optomechanik wird ein mechanischer Oszillator mit einer optischen Kavität parametrisch gekoppelt, was sowohl eine sehr genaue Auslese der mechanischen Bewegung als auch eine präzise Kontrolle desselben erlaubt. Diese effiziente Technik führte sowohl zu bahnbrechenden Studien im Grundlagenbereich als auch zu wichtigen Anwendungen, wie der Detektion von winzigen Kräften im Attonewton-Bereich.
Lay summary

Inhalt und Ziel des Forschungsprojekts: Neben Systemen basierend auf rein optischen Resonatoren, bieten supraleitende Mikrowellenresonatoren den Vorteil, dass sie eine viel grössere Designflexibilität erlauben. Wir haben ein solches Mikrowellensystem in einem herausfordernden Mikrofabrikationsprozess entwickelt. Mit diesem System konnten wir in Zusammenarbeit mit dem WMI in Garching die Verzögerung, das Vorrücken und eine vollelektronische Kontrolle der Mikrowellenpropagation zeigen. Ein Trockenkryostat würde uns erlauben die Mehrmodennatur unseres Systems voll auszunutzen und den Oszillator mit deutlich verbesserter Sensitivität auszulesen. Diese erhöhte Sensitivität wollen wir nutzen, um den Oszillator in den Quantenzustand zu bringen und anschliessend dessen nichtohmsche Verhalten zu untersuchen. Mit unserem System wollen wir einen Optik-Mikrowellen-Wandler entwickeln für weitreichende Anwendungen im zukünftigen Quanteningenieurwesen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts:Der Erwerb des Kryostaten würde uns erlauben eine bedeutende Forschungsplattform im Bereich der Mikrowellenmechanik an der EPFL aufzubauen. Dies würde zu einem engen Austausch mit anderen Gruppen führen, insbesondere mit existierenden Mikrowellengruppen in der Schweiz. Da Quantentechnologien von immenser Bedeutung für zukünftige Anwendungen sind, sind unsere Arbeiten von wirtschaftlicher und gesellschaftlicher Bedeutung.

Direct link to Lay Summary Last update: 05.06.2013

Lay Summary (French)

Lead
Dans une cavité optomécanique, un oscillateur mécanique est couplé à un champ optique ou microonde via la pression radiative. Ce couplage a été montré dans de nombreux systèmes, comme les nanorésonateurs optiques.Ceci permet par exemple des mesures très précises de positions d'oscillateurs nanomécaniques, ou le refroidissement laser, préparant l'oscillateur mécanique dans son état fondamental quantique. De nouveaux oscillateurs cohérents pilotés par la pression radiative sont possibles.
Lay summary
Contenu et but du projet: Tout d'abord, nous cherchons à démontrer avec ce réfrigérateur à dilution un transducteur pour cavité multimode. Ce transducteur permet de démontrer le suivi avec une grande sensibilité d'un oscillateur hautes fréquences utilisant des résonateurs supraconducteurs. Avec le même réglage, nous cherchons à utiliser cette plateforme pour construire un laser de Brillouin, mais également à démontrer le refroidissement opto-mécanique de Raman, et pour utiliser les mesures précédentes afin de refroidir passivement un oscillateur à 100MHz pour fermer l'état fondamental, ce qui est possible avec le réfrigérateur à dilution de 15mK. Finallement, nous avons l'intention d'utiliser le réfrigérateur à
dilution pour  aborder le défi qu'est le couplage de photons optiques avec des photons micro-ondes en utilisant, au lieu d'un couplage par pression de radiation, un équivalent électro-optique.
Contexte scientifique et social du projet: Nous avons demandé un réfrigérateur à dilution sans cryogène pour effectuer de nouveaux projets de recherche utilisant des circuits nano-optomécaniques, issus directement de nos récentes réussites dans ce domaine. Nous avons été capables de démontrer, en collaboration avec le WMI à Garching, le ralentissement, l'avancement et tout le contrôle électrique de la propagation de champs micro-ondes. Nous avons prévu d'utiliser un réfrigérateur à dilution sans cryogène (qui permet une réduction spectaculaire de la complexité des opérations) pour démontrer plusieurs nouveaux projets.  Finallement, la possibilité d'opérer et de tester des échantillons micro-ondes supraconducteurs à l'EPFL serait également un bienfait pour l'interaction avec d'autres groupes travaillant sur ce sujet.
Direct link to Lay Summary Last update: 05.06.2013

Responsible applicant and co-applicants

Collaboration

Group / person Country
Types of collaboration
Technische Hochschule München, Walter Meisner Institut Tieftemperatur Physik Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Frontiers in Quantum Optics and Quantum Information: Optomechanics meets circuit QED Talk given at a conference A reservoir for microwave light 16.07.2016 Beijing, China Kippenberg Tobias Jan;
Yale Colloquium Talk given at a conference Measurement and control of a nanomechanical oscillator at the thermal decoherence rate 03.06.2016 New Haven, United States of America Kippenberg Tobias Jan;
APS March meeting 2016 Talk given at a conference Engineered dissipative reservoir for microwave light using circuit optomechanics 14.03.2016 Baltimore, United States of America Kippenberg Tobias Jan;
Gordon Research Seminar and Conference: Mechanical Systems in the Quantum Regime Talk given at a conference Optomechanics 05.03.2016 Ventura, United States of America Kippenberg Tobias Jan;
QSIT general meeting 2016 Talk given at a conference Appearance and disappearance of quantum correlations in measurement-based control of a mechanical oscillator 01.03.2016 Arosa, Switzerland Kippenberg Tobias Jan;
International Conference on Quantum Optics 2016 Talk given at a conference Engineered dissipative reservoir for microwave light using circuit optomechanics 21.02.2016 Obergurgl, Austria Kippenberg Tobias Jan;
Symposium on Cavity-Optomechanics Talk given at a conference Cavity Optomechanics 19.11.2015 Berlin, Germany Kippenberg Tobias Jan;
5th NCCR QSIT General Meeting Poster Implementation of a quantum-limited microwave amplifier in the reversed dissipation regime of optomechanics 07.01.2015 Arosa, Switzerland Kippenberg Tobias Jan;


Self-organised

Title Date Place
Opto- and Electro-mechanical Technologies 2016 OET2016 24.07.2016 Asona (Ticino), Switzerland
ITN cQOM Workshop in Diavolezza 31.01.2016 Diavolezza, Switzerland

Awards

Title Year
Fellow of the American Physical Society (APS) 2016

Associated projects

Number Title Start Funding scheme
125723 NCCR QSIT: Quantum Science and Technology (phase I) 01.01.2011 National Centres of Competence in Research (NCCRs)
122365 Cavity Quantum Optomechanics 01.12.2009 Project funding

Abstract

Cavity optomechanics is a rapidly developing field at the interface of condensed matter Physics, quantum optics and micro and nanophotonics with concepts from AMO Physics. In these systems a mechanical oscillator is parametrically coupled to a microwave or optical degree of freedom via radiation pressure coupling, as conceived originally by Braginsky. Over the past years this coupling has been demonstrated in a wide set of systems, ranging from gramm scale mirrors, miniature Fabry Perot cavities10 to optical cavities at the micro and nanoscale. In addition optomechanical coupling has also been realized in microwave circuit opto-mechanical systems15,16, in which microwave fields are coupled to a mechanical oscillator. The successive reduction of length scale have enabled to achieve extraordinarily high coupling rates. This has enabled a wide range of experiments, for instance very sensitive position measurements of a nano-mechanical oscillators with a position uncertainty that is at or below that at the standard quantum limit. In addition the optomechanical interaction enables both laser cooling, which allows preparation of a mechanical oscillator in the quantum ground state. Moreover, novel radiation pressure driven coherent oscillators are possible and quantum limited microwave amplifiers have been demonstrated. In addition there are close analogies to atomic EIT; the phenomenon of optomechanically induced transparency enables to allow slowing, advancing and in principle also storage of optical and quantum microwave fields. In addition, cavity optomechanical systems enable to study synchronization and fundamental phase noise of mechanical oscillators. In most of these studies however, a single optical or microwave romance is used to be coupled to a mechanical oscillator. Qualitatively novel phenomena arise from coupling multiple cavity modes to a mechanical oscillator. The latter task can be very effectively realized using the novel circuit opto-mechanical platform. In these systems a superconducting microwave co-planar waveguide is coupled to a micromechanical oscillator and significant coupling rates have been demonstrated. A major advantage of this platform is that is has significant design flexibility; multiple cavity modes as well as other microwave functionality can be incorporated. Combined with the spectacular advances in circuit QED the exploration of mechanical oscillator coupled to a superconducting resonators is a very timely and promising topic, but yet small research endeavour which only includes two European groups (including the applicant’s activity with the WMI) so far. Within this R’Equip we seek to request a cryogen free dilution refrigerator to carry out novel research projects using circuit nano-optomechanics, which build directly on our recent accomplishments in this domain. We were able to design and develop over the past 3 years at EPFL circuit nano-optomechanical samples and used them in joint experiments with the WMI in Garching (Professor Gross) to demonstrate the slowing, advancing and all electrical control of microwave field propagation . The successful development of this difficult multilayer microfabrication process at EPFL, now places us in an position to address outstanding challenges in cavity optomechanics. We plan to use a cryogen free dilution refridgerator (which we ask for in this R’Equip proposal and which enables a dramatic reduction in operation complexity compared to wet dilution fridges) to demonstrate several novel projects. First, we seek to demonstrate with this Dilution Refrigerator a cavity multimode transducer, which we theoretically proposed already33, and which can be implemented using circuit nanomechanics. This transducer can be readily realized and allow to demonstrate high sensitivity monitoring of a high frequency oscillator using superconducting resonators, whose frequency greatly exceeds the cavity decay rate. Second, within the same setting we seek to use this platform to demonstrate opto-mechanical Raman cooling, and utilize the superior readout to passively cool a 100 MHz oscillator to close the ground state, which is possible with the 15 mK dilution refridgerator. We are in particular interested to investigate in this context the non-Ohmic behaviour of the mechanical oscillator34, probed through the effect of opto-mechanically induced transparency which we already demonstrated in the microwave domain recently. Third, we seek to utilize this platform to demonstrate a microwave Brillouin laser, by engineering the dissipative reservoirs of microwave and mechanical oscillator. Finally, we plan to utilize the dilution refrigerator of addressing the challenge to coupling of optical photons to microwave photons by using instead of a radiation pressure coupling an equivalent electro-optical coupling. Finally, the ability to also operate and test superconducting microwave sample at EPFL will greatly benefit the interaction with other groups in this subject (notably Professor Andreas Wallraff at ETHZ).
-