Disease resistance; Wheat; Cereals; Fungal pathogens; Rust; Powdery mildew; Durable; Genomics
Parlange F., Roffler S., Menardo F., Ben-David R., Bourras S., McNally K. E., Oberhaensli S., Stirnweis D., Buchmann G., Wicker T., Keller B. (2015), Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp. tritici on wheat Pm3 resistance alleles, in
Fungal Genet Biol, 82, 181-92.
Bourras S., McNally K. E., Ben-David R., Parlange F., Roffler S., Praz C. R., Oberhaensli S., Menardo F., Stirnweis D., Frenkel Z., Schaefer L. K., Fluckiger S., Treier G., Herren G., Korol A. B., Wicker T., Keller B. (2015), Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew, in
Plant Cell, 27, 2991-3012.
Hurni S., Scheuermann D., Krattinger S. G., Kessel B., Wicker T., Herren G., Fitze M. N., Breen J., Presterl T., Ouzunova M., Keller B. (2015), The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase, in
Proc Natl Acad Sci U S A, 112, 8780-5.
Krattinger S. G., Sucher J., Selter L. L., Chauhan H., Zhou B., Tang M., Upadhyaya N. M., Mieulet D., Guiderdoni E., Weidenbach D., Schaffrath U., Lagudah E. S., Keller B. (2015), The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice, in
Plant Biotechnol J, 1467.
Chauhan H., Boni R., Bucher R., Kuhn B., Buchmann G., Sucher J., Selter L. L., Hensel G., Kumlehn J., Bigler L., Glauser G., Wicker T., Krattinger S. G., Keller B. (2015), The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley, in
Plant J, 84, 202-15.
Shatalina M., Messmer M., Feuillet C., Mascher F., Paux E., Choulet F., Wicker T., Keller B. (2014), High-resolution analysis of a QTL for resistance to Stagonospora nodorum glume blotch in wheat reveals presence of two distinct resistance loci in the target interval, in
Theor Appl Genet, 127, 573-86.
Stirnweis D., Milani S. D., Brunner S., Herren G., Buchmann G., Peditto D., Jordan T., Keller B. (2014), Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants, in
Plant J, 79, 893-903.
Hurni S., Brunner S., Stirnweis D., Herren G., Peditto D., McIntosh R. A., Keller B. (2014), The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3, in
Plant J, 79, 904-13.
Shatalina M., Wicker T., Buchmann J. P., Oberhaensli S., Simkova H., Dolezel J., Keller B. (2013), Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno, in
Plant Biotechnol J, 11, 23-32.
Krattinger S. G., Jordan D. R., Mace E. S., Raghavan C., Luo M. C., Keller B., Lagudah E. S. (2013), Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii, in
Theor Appl Genet, 126, 663-72.
Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., Wicker T., Yahiaoui N., Mago R., Keller B. (2013), Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew, in
Plant J, 76, 957-69.
Risk J. M., Selter L. L., Chauhan H., Krattinger S. G., Kumlehn J., Hensel G., Viccars L. A., Richardson T. M., Buesing G., Troller A., Lagudah E. S., Keller B. (2013), The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley, in
Plant Biotechnol J, 11, 847-54.
Wicker T., Oberhaensli S., Parlange F., Buchmann J. P., Shatalina M., Roffler S., Ben-David R., Dolezel J., Simkova H., Schulze-Lefert P., Spanu P. D., Bruggmann R., Amselem J., Quesneville H., Ver Loren van Themaat E., Paape T., Shimizu K. K., Keller B. (2013), The wheat powdery mildew genome shows the unique evolution of an obligate biotroph, in
Nat Genet, 45, 1092-6.
The proposed work aims at understanding the molecular basis of fungal disease resistance in the crop plant wheat, including experimental approaches in genetically more tractable grass species such as rice and barley. In a first project, we want to investigate the molecular function of the durable Lr34 gene originating from wheat. This resistance gene is acting quantitatively and is effective against several fungal pathogen species in wheat. The molecular mechanism of this unique and valuable resistance remains unclear and will be investigated in detail. The Lr34 resistance gene is agronomically very useful and has remained active despite growth of cultivars containing this gene during decades and on large area. In a second set of subprojects, the wheat-powdery mildew pathosystem will be studied, integrating work on the pathogen as well as on the host species. This will involve the use of the complete genome sequence of powdery mildew which we have recently established, as well as the physical map based on BAC contigs. These new tools for whole genome approaches will be used to identify genetic determinants of the interaction on the pathogen side.