Project

Back to overview

Seismology with GPS: Mapping the Earth’s interiors with geodetic observations

English title Seismology with GPS: Mapping the Earth’s interiors with geodetic observations
Applicant Houlié Nicolas
Number 143605
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.09.2013 - 28.02.2017
Approved amount 203'039.00
Show all

All Disciplines (2)

Discipline
Geophysics
Geology

Keywords (3)

Geodesy; Seismology ; Computational Seismology

Lay Summary (French)

Lead
La contribution du GPS a l'elaboration de modèles de Terre globaux
Lay summary

Aujourd'hui, peu d'instruments sont capables de mesurer simultanément les déplacements statiques/permanents et les deformations transitoires de la surface terrestre pour des périodes de 1 a 1000 secondes. GPS est sans doute l'un des instruments les mieux a meme de remplir ces taches.

Le GPS, outre ses applications civiles grand public, est traditionnellement connu pour mesurer avec une grande precision une distance entre deux points. Si ces mesures sont repetees, il est meme possible de mesurer la variation de cette distance, nous permettrant de contraindre les parametres geometriques des failles ayant rompus, la description des discontinuites de proprietes des roches ou encore de contraindre l'orientation de l'axe principal du champ de stress dans le plan horizontal.

Grace au nouvelles technologies de telecommunication (3G, 3G+, 4G, wifi, etc.), l'echantillonnage des donnees plus rapide (jusqu'a 100Hz aujourd'hui) a ete rendu possible, et la caracterisation des sources sismiques a l'aide de donnees GPS s'est montree plus precise. Le GPS est alors devenu un outil incontournable pour l'etude de la ionosphere, de l'atmosphere ou encore des explosions volcaniques

Pendant ce projet, 1) une base de donnees de forme d'onde calculees a partir de donnees GPS sera construite, mise a disposition et jointe avec d'autres donnees sismique et 2) une tomographie globale basee sur les formes GPS sera calculee au moyen d'une inversion non-lineaire.

 

 

References:

 

Houlié, N.; Dreger, D. and Kim, A.; GPS source solution of the 2004 Parkfield earthquake. Sci. Rep., accepted, 2014.

 

Houlié, N; Occhipinti, G; Blanchard, T; Shapiro, N; Lognonne, P; Murakami, M (2011) New approach to detect seismic surface waves in 1Hz-sampled GPS time series , Sci. Rep., 1, . 10.1038/srep00044

 

Direct link to Lay Summary Last update: 16.10.2013

Lay Summary (English)

Lead
The use of GPS for global seismology
Lay summary

Today, few instruments are able to constrain simultaneously static and transient displacements for periods between 1s to 1000s or more. GPS is one of them. GPS is traditionally known to accurately measure distances (and changes of distances through time if campaigns are repeated), enabling the detection of fault orientation variations, the description of asymmetric surface ground motion due to dislocation at depth, of material property differences across faults, or the provision of constraints on the principal stress orientations. With improved telecommunications facilities, faster sampling rates became available and slip distribution models based on GPS data have become an important tool to study processes such as deformation transients observed during seismic wave propagation or during a seismic rupture, changes in ionosphere status, volcanic plumes, water vapour content in the atmosphere.

During this project a database of GPS waveforms will be made available and merged with existing seismic datasets, 2) complete a global tomography using GPS records based on nonlinear waveform inversion.


Direct link to Lay Summary Last update: 16.10.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Consistency of GPS and strong-motion records: case study of Mw9.0 Tohoku-Oki 2011 earthquake
Psimoulis P., Houlié Nicolas, Meindl Michael, Rothacher Markus (2015), Consistency of GPS and strong-motion records: case study of Mw9.0 Tohoku-Oki 2011 earthquake, in Smart Structures and Systems, 16(2), 347-366.
GPS source solution of the 2004 Parkfield earthquake
Houlié N., Dreger D., Kim A. (2014), GPS source solution of the 2004 Parkfield earthquake, in Sci. Rep., 4(3646), 1.
Long-period surface motion of the multi-patch Mw9.0 Tohoku-Oki earthquake
Psimoulis Panagiotis, Houlié Nicolas, Michel Clotaire, Meindl Michael, Rothacher Markus (2014), Long-period surface motion of the multi-patch Mw9.0 Tohoku-Oki earthquake, in Geophysical Journal International, 199, 968.
Performance of High-Rate GPS Waveforms at Long Periods: Moment Tensor Inversion of the 2003 Mw 8.3 Tokachi-Oki Earthquake
Kelevitz Krisztina, Houlié Nicolas, Giardini Domenico, Rothacher Markus, Performance of High-Rate GPS Waveforms at Long Periods: Moment Tensor Inversion of the 2003 Mw 8.3 Tokachi-Oki Earthquake, in Bulletin of the Seismological Society, 1.
The potential of high-rate GPS for strong ground motion assessment
Michel C., Kelevitz K., Houlié Nicolas, Edwards B., Psimoulis P., Su Z., Clinton J.F., Giardini Domenico, The potential of high-rate GPS for strong ground motion assessment, in Bulletin of Seismological Society of America, ?.

Collaboration

Group / person Country
Types of collaboration
Swiss Seismological Service Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
CNRS/Universite de Nantes, France France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Seismology and Geodynamics / ETH Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
University of California at Berkeley United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
AGU 2016 Poster The potential of high-rate GPS for strong ground motion assessment 12.12.2016 San Francisco, United States of America Giardini Domenico; Kelevitz Krisztina; Houlié Nicolas;
AGU 2016 Individual talk The potential of high-rate GPS for strong ground motion assessment 12.12.2016 San Francisco, USA, United States of America Houlié Nicolas; Kelevitz Krisztina;
AGU 2015 Poster Assessment of High-rate GPS time series at long periods. Kelevitz, K. Houlié, N. and Giardini, D. 14.12.2015 San Francisco, United States of America Giardini Domenico; Kelevitz Krisztina; Houlié Nicolas;
14th international workshop on modelling of mantle and lithosphere dynamics Poster Mapping the subsurface with seismic and GPS data 31.08.2015 Ile d'Oleron, France, France Kelevitz Krisztina; Houlié Nicolas;
IUGG 2015 Poster Strain and stress fields in Switzerland 22.06.2015 Prague, Czech Republic Houlié Nicolas;
EGU 2015 Poster Napa Earthquake GPS waveforms dataset 12.04.2015 Vienna, Austria Houlié Nicolas; Giardini Domenico; Rothacher Markus;
EGU 2015 Poster Assessment of high-rate GPS time series at long periods 12.04.2015 Vienna, Austria Houlié Nicolas; Nissen-Meyer Tarje; Kelevitz Krisztina; Giardini Domenico;
EGU 2014 Poster What can GPS bring to Earth seismic velocity models? Kelevitz, K.; Houlié et al. 27.04.2014 Vienna, Austria Nissen-Meyer Tarje; Houlié Nicolas; Giardini Domenico; Kelevitz Krisztina; Boschi Lapo; Rothacher Markus;


Awards

Title Year
Outstanding Student Poster (OSP) Award 2014 http://www.egu.eu/awards-medals/ospp-award/2014/krisztina-kelevitz/ 2014

Associated projects

Number Title Start Funding scheme
130061 High-Rate GNSS for Seismology 01.01.2011 Project funding
150187 High-Rate GNSS for Seismology (Extension) 01.01.2014 Project funding
134718 New challenges in seismic mapping of the Earth's mantle: anisotropy, temperature, composition 01.11.2011 Project funding

Abstract

Comparison of tomography results consistently shows that, while the large-scale (~1000 km or more) pattern of Earth heterogeneity is fairly well established (with significant uncertainty on heterogeneity amplitude), small- to intermediate-scale features of tomographic maps are strongly methodology- and/or data-dependent. Finite-frequency tomography certainly enhances resolution (Peter et al., 2009), but the improvement is small compared to the discrepancies between recently published results (e.g., Boschi et al., 2007, 2008). The nonuniformity in the distribution of seismic instruments (and events) is an important limiting factor for global resolution. We propose here to use GPS networks to increase the number of sites where seismic waves are detected and to be used for tomographic inversions, especially in the range of resolution at which tomographic models tend to disagree.Nowadays, GPS networks are expanding faster than the network of broadband seismometers (STS-1 or STS-2. Indeed, almost 10.000 GPS receivers are recording data at 15s-intervals around the Earth. 100+ receivers are recording data at 1Hz. 100+ stations are streaming data in Real-Time (RT). The reasons for this quick expansion are the price of receivers, their low maintenance, and the wide range of activities they can be used for (transport, science, public apps, etc.). This large and sometimes dense network will help improving the coverage issue in some areas (North America, but also Africa, Siberia). We propose to supplement the existing seismic dataset by increasing the bandwidth of the records from 100-300 s to 1000s+. The expansion of the periods covered will allow to better constrain the properties of the upper- and mid-mantle. However, before inverting GPS data with seismic datasets, we need to address computational challenges. We provide in this proposal step stones that will pave the way to GPS tomography and develop first 3D mantle models based on satellite data in a frequency range that previously received little tomographic attention.PhD students will 1) build a database of GPS waveforms that will be made available and merged with existing seismic datasets, 2) complete a global tomography using GPS records based on nonlinear waveform inversion.
-