Project

Back to overview

Molecular analysis of both broad-spectrum and specific fungal disease resistance in wheat

Applicant Keller Beat
Number 127061
Funding scheme Project funding (Div. I-III)
Research institution Institut für Pflanzen- und Mikrobiologie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Botany
Start/End 01.01.2010 - 31.12.2012
Approved amount 887'992.00
Show all

Keywords (7)

wheat; disease resistance; fungal pathogenomics; avirulence genes; gene suppression; durable disease resistance; sustainable resistance

Lay Summary (German)

Lead
Lay summary
Pilzliche Krankheitserreger verursachen bei Kulturpflanzen weltweit grosse Ernteverluste. Im Genpool von Weizen gibt es vererbbare (genetische) Resistenz gegen gewisse Krankheitserreger. In dem Projekt sollen die molekularen und biochemischen Grundlagen dieser Resistenz erforscht werden.Die natürliche, genetisch bedingte Krankheitsresistenz in Kulturpflanzen ist in der Pflanzenzüchtung von grosser Bedeutung. Sie erlaubt es, Ernteverluste zu reduzieren und den Einsatz von chemischen Fungiziden zu reduzieren. Oft können sich aber Krankheitserreger an Resistenzen anpassen und Resistenzgene damit nutzlos machen. Es ist deshalb wichtig, die Mechanismen besser zu verstehen, wie Krankheitserreger Resistenzen überwinden können. Andererseits gibt es einige wenige Resistenzgene, die seit vielen Jahren genutzt werden und für die bisher keine Anpassung der Pilzpathogene gefunden wurde. Die molekulare Grundlage dieser dauerhaften Resistenz ist noch wenig verstanden. Wir haben in den letzten Jahren ein in Weizen seit mehr als 40 Jahren wirksames Resistenzgen (Lr34 genannt) gegen Braunrost isoliert. Es kodiert für ein Transportprotein in der pflanzlichen Membran. Ebenfalls haben wir ein spezifisches Resistenzgen gegen Mehltau isoliert, das in vielen Formen vorkommt, aber als einzelnes Gen jeweils nur gegen einige, nie aber alle, Rassen des Mehltaupilzes Resistenz vermittelt.In diesem Projekt soll der genaue molekulare und biochemische Mechanismus der Lr34-vermittelten, dauerhaften Resistenz charakterisiert werden. Zudem soll, aufbauend auf einem zu erarbeitenden, detaillierten molekularen Verständnis der Interaktion zwischen Weizen und dem Mehltaupathogen, die Möglichkeiten einer Verbesserung der spezifischen Krankheitsresistenz geprüft werden. Dazu soll auch das gesamte Erbgut des Mehltaupilzes entschlüsselt werden.Die Resultate dieser Arbeit führen zu einem besseren Verständnis der Interaktion von Weizen und pathogenen Pilzen. Dieses Wissen kann in der Pflanzenzüchtung auf vielfältige Weise genutzt werden. Das Projekt bietet Doktorierenden und Postdocs eine ideale Basis für eigene Forschungsarbeiten und zur Qualifikation für eine weitere wissenschaftliche Laufbahn im Gebiet der pflanzlichen und agronomischen Molekularbiologie. Schliesslich tragen diese molekularen Arbeiten an der Kulturpflanze Weizen bei zur Diskussion von Nutzen und Risiken gentechnisch veränderter Nutzpflanzen.
Direct link to Lay Summary Last update: 21.02.2013

Responsible applicant and co-applicants

Employees

Publications

Publication
Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno
Shataline Margarita, Wicker Thomas, Buchmann Jan P., Oberhaensli Simone, Simkova Hana, Dolezel Jaroslav, Keller Beat (2013), Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno, in Plant Biotechnology Journal, 11, 23-32.
Identification and mapping of two powdery mildew resistance genes in Triticum boeticum L.
Chuhuneja Parveen, Kumar K, Stirnweis Daniel, Hurni Severine, Keller Beat, Dhaliwal HS, Singh Kuldeep (2012), Identification and mapping of two powdery mildew resistance genes in Triticum boeticum L., in Theoretical and Applied Genetics, 124, 1051-1058.
Functional variability of the Lr34 durable resistance gene in transgenic wheat
Risk Joanne, Selter Liselotte, Krattinger Simon G., Viccars Libby A., Richardson T.M., Buesing Gabriele, Herren Gerhard, Lagudah Evans S., Keller Beat (2012), Functional variability of the Lr34 durable resistance gene in transgenic wheat, in Plant Biotechnology Journal, 10, 477-487.
Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field
Brunner Susanne, Stirnweis Daniel, Diaz Quijano Carolina, Buesing Gabriele, Herren Gerhard, Parlange Francis, Barret Pierre, Tasset Caroline, Sautter Christof, Winzeler Michael, Keller Beat (2012), Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field, in Plant Biotechnology Journal, 10, 398-409.
A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome
Parlange F., Oberhaensli S., Breen J., Platzer M., Taudien S., Simkova H., Wicker T., Dolezel J., Keller B. (2011), A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome, in Functional and Integrative Genomics, 11, 671-677.
Comparative sequence analysis of wheat and barley powdery mildew fungi reveals gene colinearity, dates divergence and indicates host-pathogen co-evolution
Oberhaensli S., Parlange P., Buchmann J.P., Jenny F.H., Abbott J.C., Burgis T.A., Spanu P.D., Keller B., Wicker T. (2011), Comparative sequence analysis of wheat and barley powdery mildew fungi reveals gene colinearity, dates divergence and indicates host-pathogen co-evolution, in Fungal Genetics and Biology, 48, 327-334.
Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species
Krattinger S.G., Lagudah E.S., Wicker T., Risk J.M., Ashton A.R., Selter L.L., Matsumoto T., Keller B. (2011), Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species, in Plant Journal, 65, 392-403.
The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley
Jordan T., Seeholzer S., Schwizer S., Toller A., Somssich I.E., Keller B. (2011), The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley, in Plant Journal, 65, 610-621.
Transgenic Pm3b wheat lines show resistane to powdery mildew in the field
Brunner S., Hurni S., Herren G., Kalinina O., von Burg S., Zeller S.L., Schmid B., Winzeler M., Keller B (2011), Transgenic Pm3b wheat lines show resistane to powdery mildew in the field, in Plant Biotechnology Journal, 9, 897-910.
Recent emergence of the wheat Lr34 multi-pathogen resistance; insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii
Krattinger Simon G., Jordan D, Mace E, Rahavan C, Luo MC, Keller Beat, Lagudah Evans S, Recent emergence of the wheat Lr34 multi-pathogen resistance; insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii, in Theoretical and Applied Genetics.

Collaboration

Group / person Country
Types of collaboration
Max Planck Institut für Züchtungsforschung Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Imperial College Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
CSIRO Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
Punjab Agricultural University India (Asia)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel

Scientific events



Self-organised

Title Date Place
2nd International Powdery Mildew Workshop and 3rd New Phytologist Workshop 27.02.2012 Zürich

Associated projects

Number Title Start Funding scheme
115598 Analysis of Pm3 resistance gene function in transgenic wheat 01.06.2007 NRP 59 Benefits and Risks of the Deliberate Release of Genetically Modified Plants
158657 Metabolomics as part of a multi-disciplinary approach to unravel the molecular function of durable disease resistance in cereals 01.03.2015 Doc.Mobility
144081 Molecular interactions of wheat and fungal pathogens: Lr34-based, durable resistance and the wheat-powdery mildew pathosystem 01.01.2013 Project funding (Div. I-III)
105620 Fungal disease resistance genes in wheat: molecular and genomic analysis of function, diversity and evolution 01.01.2005 Project funding (Div. I-III)
163260 Molecular analysis of three different types of fungal disease resistance mechanisms in cereals 01.01.2016 Project funding (Div. I-III)
139921 PSC Plant Science Family Program 01.05.2012 Agora

Abstract

Bread wheat (Triticum aestivum L.) is an allohexaploid plant (2n=6x=42) containing the three closely related homoeologous A, B and D genomes. Wheat is grown on more than 200 million hectares worldwide, with a production of more than 600 million tons annually, representing together with rice the most important crop for human nutrition. Wheat is attacked by a large number of pathogens, mostly of fungal origin. The decades of modern resistance breeding, and the selection by farmers during the millennia before, have produced a rich resource of resistance traits. These traits are genetically well characterized, and most importantly, their function has been studied in agricultural systems for many years. The available data, e.g. on durability or environmental dependence, are highly valuable and represent an important advantage compared to model plants where no long term data are available. The mildew and the three rust diseases of wheat are among the 8-10 most relevant wheat diseases at the global level. The molecular analysis and biology of resistance traits against these diseases is the focus of this proposal. We have recently cloned the Lr34 resistance gene which has provided durable, partial resistance against leaf rust, stripe rust and powdery mildew for more than 50 years in wheat cultivars grown on very large acreage. We found that Lr34 resistance is conferred by a single gene encoding a PDR protein belonging to the ABC transporters. To understand the molecular basis of the Lr34 based durable resistance we want to study its function at the genetic and biochemical level. The three molecular polymorphisms between the susceptible and resistant allele will be separately tested for functional importance by transformation into wheat and possibly barley. In rice, Lr34 function will be studied in a knock-out mutant of the closely related Lr34 homolog. Lr34 function will be studied as far as possible in diploid systems, but work in bread wheat is also essential as a Lr34-type of resistance has only been described in hexaploid wheat so far. A putative dominant negative effect of a Lr34 mutant might be caused by direct or indirect interaction with proteins derived from homoeologous loci on the A and B genomes, possibly contributing to basal resistance. By tilling of these genes and subsequent mutant combination, we will test if the triple mutants are affected in basal resistance to host and non-host pathogens. The Arabidopsis protein PEN3 functions in non-host resistance and is homologous to LR34. Therefore, we hypothesize, in analogy to the putative function in Arabidopsis, that Lr34 is involved in the transport of an antimicrobial compound. Candidate molecules will be tested in a yeast system. The cloning of an allelic series of functional Pm3 powdery mildew resistance genes in our lab has resulted in a better understanding of function and specificity. Based on the recent finding that a susceptible allele of Pm3 (Pm3CS) is a potential suppressor of the rye Pm8 resistance gene, we want to clone Pm8. Pm8 is a putative Pm3 ortholog in rye and we want to study its evolutionary and functional relatedness to Pm3. In addition, we will analyze at the molecular level the suppression mechanism of a resistance gene, a phenomen observed quite frequently in wheat. Finally, the localization of the PM3 proteins will be studied in view of later experiments with the AVRPM3 interactors where we will also profit from using the molecular diversity of Pm3 alleles.In a third set of experiments, we want to clone AvrPm3 from wheat mildew to understand Pm3-based resistance by molecular interaction studies of R and AVR proteins. A cross of two mildew isolates has already been established and sequencing of the wheat powdery mildew genome is in progress. We have also made a high quality BAC library, and, thus, all the tools are now available for a map-based cloning approach. The genomic sequence of the pathogen that will be established during the project will also be used for a number of approaches in pathogenomics to better understand the molecular basis of the biotrophic lifestyle of this pathogen.The proposed work in the three topics is expected to significantly contribute to an improved molecular understanding of both broad-spectrum, durable resistance as well as specific fungal disease resistance in wheat.
-