climate change; air quality; water quality; global biogeochemical cycles; dynamic global vegetation modelling; nitrogen cycle; soil development and erosion; dust; nitrogen; wildfires; pedogenesis; methane; chemical composition of the atmosphere; carbon cycle; ozone; air pollution; paleoclimate
Tarasov Pavel E., Williams John W., Kaplan Jed O., Hermann Österle, Tatiana V. Kuznetsova, Mayke Wagner (2012), Environmental Change in the Temperate Grasslands and Steppe, SAGE Publishers, London, ---.
Luterbacher J., R. García-Herrera, S. Akcer-On, R. Allan, M. C. Alvarez-Castro, G. Benito, J. Booth, U. Büntgen, N. Cagatay, D. Colombaroli, B. Davis, J. Esper, T. Felis, D. Fleitmann, D. Frank, D. Gallego, E. Garcia-Bustamante, R. Glaser, J. F. González-Rouco, H. Goosse, T. Kiefer, M. G. Macklin, S. Manning, P. Montagna, L. Newman (2012), A review of 2000 years of paleoclimatic evidence in the Mediterranean, Elsevier, Amsterdam, 87-185.
Wu Shiliang, Mickley Loretta J., Kaplan Jed O., Jacob Daniel J. (2012), Impacts of changing land use and land cover on atmospheric chemistry and air quality over the 21st century, in
Atmospheric Chemistry and Physics, 12, 1597-1609.
Kaplan J. O., Krumhardt K. M., Zimmermann N. E. (2011), The effects of human land use and climate change over the past 500 years on the carbon cycle of Europe, in
Global Change Biology, 902-914.
Guerrero O. J., Jiménez R., Lin J. C., Diskin G. S., Sachse G. W., Kort E. A., Kaplan J. O. (2011), Evaluación de inventarios de emisión de metano en Colombia y Panamá a partir de simulación Lagrangiana y mediciones aeroportadas durante la misión TC4 de la NASA, in
9th Colombian Congress of Meteorology.
Walker D. A., Forbes B. C., Leibman M. O., Epstein H. E., Bhatt U. S., Comiso J. C., Drozdov D. S., Gubarkov A. A., Jia G. J., Kaarlejarvi E., Kaplan J. O., Khomutov A. V., Kofinas G. P., Kumpula T., Kuss P., Moskalenko N. G., Meschtyb N. A., Pajunen A., Raynolds M. K., Romanovsky V. E., Stammler F., Yu Q. (2011), Cumulative effects of rapid land-cover and land-use changes on the Yamal Peninsula, Russia, Springer, Heidelberg, 207-236.
Pickett-Heaps C. A., Jacob D. J., Wecht K. J., Kort E. A., Wofsy S. C., Diskin G. S., Worthy D. E. J., Kaplan J. O., Bey I., Drevet J. (2011), Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), in
Atmospheric Chemistry and Physics, 11, 3773-3779.
Davis B. A. S., Brewer S. (2011), A unified approach to orbital, solar, and lunar forcing based on the latitudinal temperature/insolation gradient, in
Quaternary Science Reviews, 30, 1861-1874.
Kaplan J.O., Krumhardt K. M., Ellis E. C., Ruddiman W. F., Lemmen C., Goldewijk K. K. (2011), Holocene carbon emissions as a result of anthropogenic land cover change, in
The Holocene, 21, 775-791.
Goetz S. J., Epstein H. E., Bhatt U. S., Jia G. J., Kaplan J. O., Lischke H., Yu Q., Bunn A., Lloyd A. H., Alcaraz-Segura D., Beck P. S. A., Comiso J. C., Raynolds M. K., Walker D. A. (2011), Recent Changes in Arctic Vegetation: Satellite Observations and Simulation Model Predictions, Springer, Heidelberg, 9-36.
Hodson E. L., Poulter B., Zimmermann N. E., Prigent C., Kaplan J. O. (2011), The El Niño–Southern Oscillation and wetland methane interannual variability, in
Geophysical Research Letters, 38, ---.
Büntgen U., Tegel W., Nicolussi K., McCormick M., Frank D., Trouet V., Kaplan J. O., Herzig F., Heussner K. U., Wanner H., Luterbacher J., Esper J. (2011), 2500 Years of European Climate Variability and Human Susceptibility, in
Science, 331, 578-582.
Melton J. R., Kaplan J. O., Pfeiffer M., Collins P. M. (2010),
Documentation of the ARVE Dynamic Global Vegetation Model (ARVE-DGVM).
Collins P. M., Kaplan J. O., Davis B. A. S. (2010), Could anthropogenic soil erosion have influenced Mediterranean vegetation distribution over the Holocene?, in
IOP Conference Series: Earth and Environmental Science, 9, ---.
Pfeiffer M., Kaplan J. O. (2010), Response of terrestrial N2O and NOx emissions to abrupt climate change, in
IOP Conference Series: Earth and Environmental Science, 9, ---.
Krumhardt K. M. (2010),
ARVE Technical Report #3: Methodology for worldwide population estimates: 1000 BC to 1850.
Gaillard M. J., Sugita S., Mazier F., Trondman A. K., Brostrom A., Hickler T., Kaplan J. O., Kjellstrom E., Kokfelt U., Kunes P., Lemmen C., Miller P., Olofsson J., Poska A., Rundgren M., Smith B., Strandberg G., Fyfe R., Nielsen A. B., Alenius T., Balakauskas L., Barnekow L., Birks H. J. B., Bjune A., Bjorkman L. (2010), Holocene land-cover reconstructions for studies on land cover-climate feedbacks, in
Climate of the Past, 6, 483-499.
Boyle J. F., Gaillard M. J., Kaplan J. O., Dearing J. A. (2010), Modelling prehistoric land use and carbon budgets: A critical review, in
The Holocene, doi: 10.1177/095968361038698, 1-8.
Oldfield F., R. W. Battarbee, J. F. Boyle, N. G. Cameron, B. Davis, R. P. Evershed, A. D. McGovern, V. Jones, R. Thompson, R. Walker (2010), Terrestrial and aquatic ecosystem responses to late Holocene climate change, in
Quaternary Science Reviews, 29, 1040-1054.
Mauri A. (2010), Field experiments using CO2 enrichment: A comparison of two main methods, in
iForest, 3, 109-112.
Walker D. A., Leibman M. O., Epstein H. E., Forbes B. C., Bhatt U. S., Raynolds M. K., Comiso J. C., Gubarkov A. A., Khomutov A. V., Jia G. J., Kaarlejarvi E., Kaplan J. O., Kumpula T., Kuss P., Matyshak G., Moskalenko N. G., Orekhov P., Romanovsky V. E., Ukraientseva N. G., Yu Q. (2009), Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index, in
Environmental Research Letters, 4, ---.
Kaplan J. O., Krumhardt K. M., Zimmermann N. (2009), The prehistoric and preindustrial deforestation of Europe, in
Quaternary Science Reviews, 28, 3016-3034.
Davis B. A. S. (2009), Orbital forcing and the role of the latitudinal temperature/insolation gradient, in
Climate Dynamics, 32, 143-165.
Williams J. W., Gonzales L. M., Kaplan J. O. (2008), Leaf area index for northern and eastern North America at the Last Glacial Maximum: a data-model comparison, in
Global Ecology and Biogeography, 17, 122-134.
Wanner H., Beer J., Butikofer J., Crowley T. J., Cubasch U., Fluckiger J., Goosse H., Grosjean M., Joos F., Kaplan J. O., Kuttel M., Muller S. A., Prentice I. C., Solomina O., Stocker T. F., Tarasov P., Wagner M., Widmann M. (2008), Mid- to Late Holocene climate change: An overview, in
Quaternary Science Reviews, 27, 1791-1828.
Krumhardt K. M., Kaplan J. O. (1990),
ARVE Technical Report #2: A spline fit to atmospheric CO.
Dirk Brinkman, James Casey, Mike Buell, Stewart Cohen, Richard Chavez, Jed O. Kaplan, David Marmorek, Ralph Matthews, Katie McPherson, Joe Melton, Georgia Piggott, Marc Porter, Lars Reese-Hansen, Don Robinson, Robin Sydneysmith, Jason Smith, Jordan Tesluk, Richard Thompson, Doug Williams,
Climate Change Adaptation for Northwest Skeena Communities, University of British Columbia, Vancouver.
Collins P. M., Davis B. A. S., Kaplan J. O., The mid-Holocene vegetation of the Mediterranean region and southern Europe, and comparison to the present day, in
Journal of Biogeography.
The CASTANEA project asks the question: How do changes in the terrestrial biosphere amplify changes in the climate system? Through an interdisciplinary study of the interaction between soils, vegetation and the atmosphere, and by leveraging expertise in atmospheric climate-chemistry modelling at the host institution, we will study how emissions of nitrogen-containing gases and dust from the Earth’s surface might amplify changes in global climate. This project addresses a major gap in our understanding of the Earth system, namely the interaction between plants, soil, and microorganisms, and their relationship with greenhouse gas concentrations and climate. CASTANEA has far-reaching implications for our ability to understand abrupt climate changes in the past, and hence to predict the future evolution of our planet.CASTANEA will be organized around two linked activities, 1) modelling soil dynamics and dust sources through the interaction between vegetation, rock, wetlands and topography and 2) understanding the past record of N2O and dust concentrations observed in polar ice through coupled source, transport and sink modelling. The representation of pedogenesis and other “slow” processes is an acknowledged weakness of the current generation of dynamic land surface models used both in climate modelling and for studies of the global carbon cycle. Current interpretation of dust and N2O records from ice cores is extremely speculative because of a lack of process models available for hypothesis testing. CASTANEA, through its interdisciplinary structure, outward-looking and dynamic project leadership and renowned host institution, is in a unique position to make great advances in our understanding of the Earth system and to better predict human impact on potential future climate change.