Publication

Back to overview

Functional Dissection of the Apicomplexan Glideosome Molecular Architecture

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Publication date 2010
Author Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D,
Project Study of factors governing the invasive and replicative modes in Apicomplexa
Show all

Original article (peer-reviewed)

Journal CELL HOST & MICROBE
Volume (Issue) 8(4)
Page(s) 343 - 357
Title of proceedings CELL HOST & MICROBE

Abstract

The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.
-