Back to overview

Kernel Manifold Alignment for Domain Adaptation.

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Tuia D., Camps-Valls G.,
Project Multimodal machine learning for remote sensing information fusion
Show all

Original article (peer-reviewed)

Journal PLoS One
Page(s) e0148655
Title of proceedings PLoS One
DOI 10.1371/journal.pone.0148655

Open Access

Type of Open Access Publisher (Gold Open Access)


The wealth of sensory data coming from different modalities has opened numerous opportunities for data analysis. The data are of increasing volume, complexity and dimensionality, thus calling for new methodological innovations towards multimodal data processing. However, multimodal architectures must rely on models able to adapt to changes in the data distribution. Differences in the density functions can be due to changes in acquisition conditions (pose, illumination), sensors characteristics (number of channels, resolution) or different views (e.g. street level vs. aerial views of a same building). We call these different acquisition modes domains, and refer to the adaptation problem as domain adaptation. In this paper, instead of adapting the trained models themselves, we alternatively focus on finding mappings of the data sources into a common, semantically meaningful, representation domain. This field of manifold alignment extends traditional techniques in statistics such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly non-corresponding data pairs between the domains. We introduce a kernel method for manifold alignment (KEMA) that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a discriminative alignment preserving each manifold inner structure, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible, which allows transfer across-domains and data synthesis. To authors' knowledge this is the first method addressing all these important issues at once. We also present a reduced-rank version of KEMA for computational efficiency, and discuss the generalization performance of KEMA under Rademacher principles of stability. Aligning multimodal data with KEMA reports outstanding benefits when used as a data pre-conditioner step in the standard data analysis processing chain. KEMA exhibits very good performance over competing methods in synthetic controlled examples, visual object recognition and recognition of facial expressions tasks. KEMA is especially well-suited to deal with high-dimensional problems, such as images and videos, and under complicated distortions, twists and warpings of the data manifolds. A fully functional toolbox is available at