Publication

Back to overview

Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5 K warming

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Palter Jaime B., Frölicher Thomas L., Paynter David, John Jasmin G.,
Project Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX)
Show all

Original article (peer-reviewed)

Journal Earth System Dynamics
Volume (Issue) 9(2)
Page(s) 817 - 828
Title of proceedings Earth System Dynamics
DOI 10.5194/esd-9-817-2018

Open Access

URL http://doi.org/10.5194/esd-9-817-2018
Type of Open Access Publisher (Gold Open Access)

Abstract

The Paris Agreement has initiated a scientific debate on the role that carbon removal – or net negative emissions – might play in achieving less than 1.5 K of global mean surface warming by 2100. Here, we probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO 2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways. We run five ensemble members of each of these simulations: (1) a standard Representative Concentration Pathway (RCP4.5) scenario, which produces 2 K of surface warming by 2100 in our model; (2) a stabilization pathway in which atmospheric CO 2 concentration never exceeds 440 ppm and the global mean temperature rise is approximately 1.5 K by 2100; and (3) an overshoot pathway that passes through 2 K of warming at mid-century, before ramping down atmospheric CO 2 concentrations, as if using carbon removal, to end at 1.5 K of warming at 2100. Although the global mean surface temperature change in response to the overshoot pathway is similar to the stabilization pathway in 2100, this similarity belies several important differences in other climate metrics, such as warming over land masses, the strength of the Atlantic Meridional Overturning Circulation (AMOC), ocean acidification, sea ice coverage, and the global mean sea level change and its regional expressions. In 2100, the overshoot ensemble shows a greater global steric sea level rise and weaker AMOC mass transport than in the stabilization scenario, with both of these metrics close to the ensemble mean of RCP4.5. There is strong ocean surface cooling in the North Atlantic Ocean and Southern Ocean in response to overshoot forcing due to perturbations in the ocean circulation. Thus, overshoot forcing in this model reduces the rate of sea ice loss in the Labrador, Nordic, Ross, and Weddell seas relative to the stabilized pathway, suggesting a negative radiative feedback in response to the early rapid warming. Finally, the ocean perturbation in response to warming leads to strong pathway dependence of sea level rise in northern North American cities, with overshoot forcing producing up to 10 cm of additional sea level rise by 2100 relative to stabilization forcing.
-