Publikation

Zurück zur Übersicht

Perplexity minimization for translation model domain adaptation in statistical machine translation

Publikationsart Peer-reviewed
Publikationsform Tagungsbeitrag (peer-reviewed)
Autor/in Sennrich Rico,
Projekt Domain-specific Statistical Machine Translation
Alle Daten anzeigen

Tagungsbeitrag (peer-reviewed)

Titel der Proceedings Proceedings of the 13th Conference of the European Chapter of the Association for Computational Ling
Ort Avignon

Open Access

URL http://www.zora.uzh.ch/61712/
OA-Form Repositorium (Green Open Access)

Abstract

We investigate the problem of domain adaptation for parallel data in Statistical Machine Translation (SMT). While techniques for domain adaptation of monolingual data can be borrowed for parallel data, we explore conceptual differences between translation model and language model domain adaptation and their effect on performance, such as the fact that translation models typically consist of several features that have different characteristics and can be optimized separately. We also explore adapting multiple (4?10) data sets with no a priori distinction between in-domain and out-of-domain data except for an in-domain development set.
-