Back to overview

Flexible resources for quantum metrology

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Friis Nicolai, Orsucci Davide, Skotiniotis Michalis, Sekatski Pavel, Djunko Vedran, Briegel Hans, Dür Wolfgang,
Project Quantum metrology and macroscopic quantum states
Show all

Original article (peer-reviewed)

Journal New Jour. Phys.
Volume (Issue) 19
Page(s) 063044
Title of proceedings New Jour. Phys.
DOI 10.1088/1367-2630/aa7144

Open Access

Type of Open Access Publisher (Gold Open Access)


Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.