Zurück zur Übersicht

Mining the Ecosystem to Improve Type Inference For Dynamically Typed Languages

Publikationsart Peer-reviewed
Publikationsform Tagungsbeitrag (peer-reviewed)
Publikationsjahr 2014
Autor/in Spasojević Boris, Lungu Mircea, Nierstrasz Oscar
Projekt Agile Software Assessment
Alle Daten anzeigen

Tagungsbeitrag (peer-reviewed)

Titel der Proceedings Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Status Publiziert
DOI 10.1145/2661136.2661141

Open Access


Dynamically typed languages lack information about the types of variables in the source code. Developers care about this information as it supports program comprehension. Ba- sic type inference techniques are helpful, but may yield many false positives or negatives. We propose to mine information from the software ecosys- tem on how frequently given types are inferred unambigu- ously to improve the quality of type inference for a single system. This paper presents an approach to augment existing type inference techniques by supplementing the informa- tion available in the source code of a project with data from other projects written in the same language. For all available projects, we track how often messages are sent to instance variables throughout the source code. Predictions for the type of a variable are made based on the messages sent to it. The evaluation of a proof-of-concept prototype shows that this approach works well for types that are sufficiently popular, like those from the standard librarie, and tends to create false positives for unpopular or domain specific types. The false positives are, in most cases, fairly easily identifiable. Also, the evaluation data shows a substantial increase in the number of correctly inferred types when compared to the non-augmented type inference.