Project

Back to overview

DigiTrainer : a digital tool to assist learners in training their mentor teacher

Applicant Runtz-Christan Edmée
Number 196846
Funding scheme Spark
Research institution Sciences de l'éducation Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Education and learning sciences, subject-specific education
Start/End 01.12.2020 - 30.11.2021
Approved amount 99'764.00
Show all

All Disciplines (2)

Discipline
Education and learning sciences, subject-specific education
Information Technology

Keywords (4)

Learning analytics; Professional development; Mentor teacher; Training of teacher

Lay Summary (French)

Lead
Souvent la formation professionnelle repose sur une logique d’alternance entre l’institution de formation et le terrain professionnel. L’enjeu de ce projet est de renverser la logique de formation en partant du principe que ce n’est pas seulement le formateur de terrain qui forme l’apprenant stagiaire, mais que c’est également ce dernier qui contribue à former son formateur.
Lay summary

Cette inversion des rôles peut se faire en mobilisant des outils susceptibles de permettre au formateur de terrain (FT) de prendre conscience des postures et des capacités qu’il mobilise lorsqu’il travaille avec un apprenant. Les outils numériques sont de précieux auxiliaires pour faciliter cette conscientisation. Le projet DigiTrainer se donne pour objectifs de développer une plateforme numérique sur laquelle il sera possible de collecter, d’analyser et de modéliser des données susceptibles de favoriser cette prise de conscience par les FT.

Ainsi, durant son activité en situation professionnelle, l’apprenant stagiaire pourra compléter périodiquement différents questionnaires ou pourra renseigner une base de données sur différents aspects pour permettre au système informatique de réaliser le profil perçu de l’accompagnement. Les données prises en compte seront également produites par le FT lui-même ce qui permettra de faire des comparaisons entre ses perceptions et celles de l’apprenant. 

Plusieurs outils seront à disposition : d’abord un questionnaire qui permettra de déterminer les postures du FT ; ensuite un outil d’analyse du discours sera implémenté de manière à repérer les temps de parole des deux acteurs ainsi que les éléments - clés du discours (verbes d’action, typologie des questions, relances, types de feed-back ...) ; enfin, un interface simple permettra d’ajouter des annotations sur le matériau collecté afin de permettre aux utilisateurs de trier ces différents feed-back et de dire en quoi ils sont importants ou non pour eux.

 
Direct link to Lay Summary Last update: 26.10.2020

Responsible applicant and co-applicants

Abstract

TTraining tomorrow's professionals is a major challenge for training institutions, particularly in a society which is undergoing major changes - the digital shift, transformations in professional practices, changes in profession over the course of a lifetime. Often this training is founded on a vocational principle which involves trainees alternating between the training institution and a practical on-the-job work placement. Linking these two worlds is not always easy. The professional environment is frequently a central component in the training, and the person supervising the learner in the workplace plays an essential role in his or her professional development. Indeed, this so-called mentor teacher (MT) must be able to observe, give feedback and conduct different types of discussions in order to guarantee the quality of the training. The training of the MT is therefore of utmost importance. To date, it has been difficult to implement tools that enable MTs to fully play their role because implementation is time-consuming, costly and complex. MTs need to work extensively on their own professional identity for them to progress from the function of a role model to that of a mentor who is capable of bringing to bear new competences in the mentee which can empower the person in question. In addition, this responsibility for trainees often leads MTs to question their own practices and the way in which they carry out their occupation. In this respect, many of them report that they learn extensively from supervising future colleagues. The objective of this project is to completely reverse the training approach, based on the principle that it is not only the MT who trains the trainee or mentee - as future practitioner - but that it is also the latter who helps train his or her MT. In this way, mentees are actively involved in training the MT supervising them in their work placements. It has two central innovative tenets: a) an inversion of the training approach and b) the exploitation of digital data produced based on situations experienced by the participants.This role reversal can be carried out using tools that potentially enable the MT to become aware of his or her mentoring stance and the abilities he or she draws on when working with the learner. In this context, digital tools are valuable aids that facilitate this awareness. The objectives of the DigiTrainer project are to develop a digital platform for collecting, analysing and modelling data that are likely to raise the MT’s awareness.Thus, during his or her professional placement, a trainee will occasionally fill in different questionnaires or enter information in a database on different aspects, and the computer system will create the mentor’s profile based on the mentee’s perceptions. The MT will also enter data into the system, which will allow comparisons to be made between the learner's perceptions and those of the MT. The storage and linking of the data entries will also allow the MT to monitor the evolution of his or her profile and provide input for reflection on his or her professional development. Several tools will be made available. First, a questionnaire will be used to determine the mentoring stance of the MT: Is he or she more of an imposer, organizer, facilitator, etc.? Then, to assess the manner in which the interviews are conducted, a discourse analysis tool will be used to identify the time spent speaking by the two key players as well as the core elements of the discourse (action verbs, typology of questions, reminders, types of feedback, etc.). Finally, the tool will have a simple interface which will allow users to add comments to the collected materials, classify the different types of feedback and indicate the extent to which the feedback is important for them or not.
-