Project

Back to overview

FlexPrint, rapid manufacturing of patient-tailored soft medical devices

Applicant Delrot Paul
Number 184178
Funding scheme Bridge - Proof of Concept
Research institution
Institution of higher education EPF Lausanne - EPFL
Main discipline Microelectronics. Optoelectronics
Start/End 01.04.2019 - 31.03.2020
Approved amount 129'004.00
Show all

All Disciplines (2)

Discipline
Microelectronics. Optoelectronics
Material Sciences

Keywords (6)

Custom production; Silicone; Elastomers; Additive manufacturing; Volumetric 3D printing; Personalized medicine

Lay Summary (French)

Lead
La tendance actuelle en médecine est de fournir des traitements de plus en plus personnalisés aux patients. Cela nécessite notamment de produire des pièces souples sur mesure, par exemple pour la formation préopératoire des chirurgiens ou pour la fabrication d'appareils portables telles que les prothèses auditives. Ces pièces personnalisées sont actuellement produites par moulage ou fabrication additive. Cependant, chacune de ces méthodes est limitée. Le moulage permet seulement de produire des pièces simples en élastomère. Et si la fabrication additive offre plus de liberté de conception, elle ne permet actuellement pas de traiter de manière pratique les matériaux souples.
Lay summary

Notre projet vise principalement à développer une méthode volumétrique de fabrication additive qui permette de produire rapidement des pièces complexes, souples, et spécifiques à chaque patient. Plus précisément, nous souhaitons : (i) formuler de nouveaux elastomères pouvant être solidifiés par exposition à la lumière (ii) concevoir un système portable de fabrication additive volumétrique (iii) tester la méthode volumétrique de fabrication additive dans des conditions d’utilisation réelle, comme pour la production de coques souples de prothèse additive directement chez un audiologiste.

Notre travail permettra d’explorer les nouvelles possibilités de production d’objets complexes et souples offertes par la fabrication additive volumétrique. Ainsi, la production de coques souples de prothèses auditives permettrait un gain de confort aux patients par rapport aux coques dures actuellement disponibles. D’autre part, notre technique de production pourrait être utilisée pour la réalisation de modèles chirurgicaux d’entraînement préopératoire, ce qui contribuerait à rendre les chirurgies plus sûres.

Direct link to Lay Summary Last update: 03.12.2018

Responsible applicant and co-applicants

Employees

Abstract

Patient-tailored devices made of soft materials are increasingly demanded for medical applications, for instance for preoperative training of surgeons or to make compliant wearable devices such as hearing aids. Such customized devices are currently produced through casting or additive manufacturing. However, each of these methods suffers from specific limitations. Casting allows producing elastomeric parts but is limited in design complexity, as hollow parts, essential for medical applications, are challenging to produce with molds. On the other hand, additive manufacturing offers more design freedom but currently cannot conveniently process elastomeric material. Finally, both techniques currently require significant manual post-processing, which results in long lead times that are detrimental to patient care.This project aims at overcoming the limitations of both casting and conventional additive manufacturing of patient-tailored soft medical devices by further developing a new additive manufacturing technique I recently co-invented. In this novel additive manufacturing technique, parts are created in a volumetric way as opposed to the layer-wise printing method used in existing 3D printers. This enables fabricating complex hollow parts in a sterile way and with little to no manual labor. Furthermore, the fabrication speed is dramatically improved over existing manufacturing techniques as the whole part’s volume is created at once.The current version of the volumetric 3D printer is a bulky laboratory demonstrator that is able to produce hard acrylic parts. Recent tests demonstrated that it could also produce complex elastomeric parts in less than a minute. This Bridge project aims at transforming the current bulky laboratory setup into a marketable compact prototype that would be field-tested by our implementation partners to manufacture elastomeric hearing aids (Sonova AG, Stäfa, ZH and Silver Audition, Morges, VD) and tissue-like surgical models (CHUV Lausanne). As the current laboratory experiment uses a high-power CW laser, turning it into a compact prototype implies both making the technology more efficient and a challenging optical design. Moreover, we plan to further develop and characterize printable elastomeric materials. At the end of the project, we expect to have feedback from our implementation partners on the different value propositions of our compact 3D printer prototype in real use cases, that is to say for the in-shop production of compliant hearing aid shells and the manufacturing of tissue-like surgical models. We also plan to publish on our achievements in high-impact factor journals.
-