Project

Back to overview

Molecular Control of Bioinspired Supramolecular Polymers with Fuel-Regulated Dynamic Behavior

English title Molecular Control of Bioinspired Supramolecular Polymers with Fuel-Regulated Dynamic Behavior
Applicant Pavan Giovanni Maria
Number 183336
Funding scheme Bilateral programmes
Research institution Dipartimento Tecnologie Innovative (DTI) Scuola universitaria professionale della Svizzera italiana (SUPSI)
Institution of higher education University of Applied Sciences and Arts of Southern Switzerland - SUPSI
Main discipline Material Sciences
Start/End 01.04.2019 - 31.03.2023
Approved amount 348'354.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Physical Chemistry

Keywords (7)

Living supramolecular polymerization; Autonomous regulation; Dynamic polymers; Supramolecular polymers; Bioinspired materials; Self-assembly; Fuel-regulated system

Lay Summary (Italian)

Lead
Molti materiali esistenti in natura sono di fatto polimeri supramolecolari formati da unità fondamentali (monomeri) che auto-assemblano e disassemblano dinamicamente consumando “carburante molecolare” sotto forma di altre molecole presenti nel sistema. Le interazioni e gli scambi molecolari continui all’interno di questi sistemi molecolari complessi impartiscono proprietà dinamiche affascinanti a questi polimeri supramolecolari, come la capacità di auto-ripararsi, di adattarsi, di crescere o depolimerizzare dinamicamente in risposta a cambiamenti nell’ambiente circostante. Capire come progettare materiali artificiali con simili proprietà dinamiche aprirebbe nuove strade verso nuovi tipi di materiali dinamici bio-ispirati. Allo stesso tempo, questo richiede una comprensione del comportamento di questi sistemi molecolari complessi (struttura e dinamica) che è molto difficile da ottenere.
Lay summary

Obiettivi

In questo progetto bilaterale Svizzera-India combineremo approcci computazionali (Pavan Lab., Svizzera) e sperimentali (George Lab., India) avanzati per raggiungere questo obiettivo. Ci concentreremo su polimeri supramolecolari che sono generati, controllati e regolati dinamicamente da carburanti molecolari come ATP, DNA/RNA e piccoli peptidi. I risultati ottenuti tramite simulazioni molecolari avanzate ad alta risoluzione (Pavan) saranno sistematicamente confrontati con vari tipi di esperimenti e design molecolari (George), fornendo una caratterizzazione completa del comportamento dinamico di questi sistemi molecolari complessi.

Contesto scientifico e sociale

La natura usa il principio del self-assembly per costruire materiali “vivi” con affascinanti proprietà dinamiche e adattive. Ne sono un esempio i microtubuli, che tramite una continua polimerizzazione/depolimerizzazione regolata da un carburante molecolare (GTP) svolgono funzioni fondamentali nelle cellule. Prendere ispirazione dalla natura, imparando a progettare nuovi tipi di materiali con proprietà dinamiche controllabili avrebbe un grande impatto su vari campi tecnologici, dalla nanomedicina e farmaceutica, a nuovi materiali, adesivi e funzionalizzazioni auto-riparanti e più sostenibili, o materiali intelligenti in grado di cambiare in risposta all’ambiente esterno e di scambiare informazioni in modo “logico” all’interno di sistemi chimici complessi.

Direct link to Lay Summary Last update: 14.03.2019

Responsible applicant and co-applicants

Gesuchsteller/innen Ausland

Employees

Abstract

Dynamicity is an important feature of biological systems. Many natural materials are composed of fundamental units (or monomers) that dynamically self-assemble/disassemble in response to precise chemical stimuli or signals. Cellular microtubules, for example, are composed of tubulin proteins that polymerize and depolymerize absorbing the chemical energy provided by a molecular fuel (GTP). In a similar way, actin filaments grow using ATP as the fuel. While such dynamic stimuli-responsive systems play a remarkable role in many biological functions, developing synthetic materials possessing similar fuel-regulated dynamic functions is extremely interesting for many applications. Nonetheless, this is challenging. In fact, this requires to comprehend the molecular factors controlling the system dynamics and thermodynamics, the mechanisms of action of the fuel, and to translate these into a rational synthetic design. Achieving such an ambitious goal requires the synergistic use of state of the art computational/theoretical and synthetic/experimental approaches.Recently, the group of George (Indian PI in this project) reported the synthesis of a few examples of bioinspired fuel-driven supramolecular systems that assemble into 1-dimensional (fibers), 2-dimensional (sheets) and 3-dimensional (vesicles) structures. These possess dynamic stimuli-responsive properties that can be passively and temporally activated, deactivated and specifically controlled by using a chemical fuel (e.g., ATP), reminiscent of some natural materials (Nat. Commun. 2018, 9, 1295). Translating such pioneering studies into high-fidelity rational design of complex dynamic systems where the fuel-regulated dynamic properties are precisely controlled requires a molecular level understanding that is prohibitively difficult to achieve by the experiments. The group of Pavan (Swiss PI in this project) recently reported computational approaches that allow studying the dynamic properties of supramolecular assemblies at submolecular resolution (Nat. Commun. 2017, 8, 147 & J. Phys. Chem. B 2018, 122, 4169). These permit to observe and study the dynamic stimuli responsiveness of the assemblies in action, and at a sufficiently high resolution to identify the key molecular factors that control the spatiotemporal characteristics of the material.The recent developments by the groups of George and Pavan stimulated directions for further broader investigations. In this collaborative project, we will combine state-of-the art synthetic (George) and computational (Pavan) strategies to learn how to rationally design synthetic supramolecular polymers with fuel-controlled dynamic behavior. We will focus on dynamic supramolecular fibers regulated by different types of biological fuels:- ATP: We will compare different types of functionalization in the monomers (metal or guanidinium groups) that can lead to ATP-seeded self-assembly and ATP-controlled dynamic polymerization/depolymerization- DNA, RNA or short negatively charged peptides (pGLU or pASP): We are interested in supramolecular polymers possessing dynamic properties that can emerge and be regulated in a specific way by other bio-relevant fuelsWe devised various in vitro and in silico experiments that will allow us to investigate the dynamic properties of the supramolecular polymers down to the submolecular level, providing information on how to master them. The synergistic combination of the unique experimental and computational expertise of the two groups will allow us to move an unprecedented step forward in the creation of synthetic fuel-regulated materials. The results that we will achieve during this collaborative project will remarkably advance the fields of materials science, biomimetic dynamic materials, supramolecular polymers, supramolecular chemistry and self-assembly.
-