Projekt

Zurück zur Übersicht

EmbryoSpin: Nuclear magnetic resonance at the scale of a single embryo

Titel Englisch EmbryoSpin: Nuclear magnetic resonance at the scale of a single embryo
Gesuchsteller/in Grisi Marco
Nummer 180268
Förderungsinstrument Bridge - Proof of Concept
Forschungseinrichtung Laboratoire de microsystèmes 1 EPFL - STI - IMT - LMIS1
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Mikroelektronik, Optoelektronik
Beginn/Ende 01.03.2018 - 31.01.2019
Bewilligter Betrag 129'400.00
Alle Daten anzeigen

Alle Disziplinen (3)

Disziplin
Mikroelektronik, Optoelektronik
Embryologie, Entwicklungsbiologie
Biochemie

Keywords (5)

NMR; single-embryo; sub-nL; CMOS; IVF

Lay Summary (Italienisch)

Lead
La risonanza magnetica nucleare è una tecnica spettroscopica che permette di avere accesso ad informazioni sulla chimica nella materia. Nota per essere bio-compatibile e di natura non invasiva, la risonanza magnetica è oggi uno strumento essenziale per la medicina diagnostica. L'uso della risonanza magnetica sulla scala di organismi multicellulari complessi, come l'uomo e il topo, è già abilitato e ottimizzato grazie alla strumentazione in commercio. Tuttavia, l'uso di questa tecnica alla scala tipica di microorganismi e cellule è al momento ostacolato dalle limitazioni tecniche della strumentazione convenzionale.
Lay summary
Soggetto e obbiettivo 

In questo progetto si vogliono implementare prototipi di sensori concepiti per abilitare l'uso della risonanza magnetica alla scala di un embrione umano. Tale tecnologia offrirà sensitività migliorate alla scala microscopica combinate con un grado di versatilità eccezionale. L'uso di questa tecnologia permetterà, per la prima volta, l'uso della risonanza magnetica su singoli embrioni di mammifero, micro-tessuti derivati da cellule staminali, o ancora organismi unicellulari. Lo sviluppo tecnico del prototipo si concentra su aspetti chiave come la facilità di uso e la compatibilità con i campi magnetici tipicamente usati nei laboratori di tutto il mondo. Un prototipo con queste caratteristiche mi permetterà di fare studi di fattibilità su embrioni di bovino e materiale derivato da cellule staminali. I dati saranno il nostro "Proof of Concept", che verrà poi possibilmente impugnato per cercare un accordo con una clinica IVF e muovere i primi passi verso degli studi preclinici atti a validare l'uso della risonanza magnetica anche nel campo della fertilizzazione in vitro.

Contesto socio-scientifico

Oltre all'evidente interesse scientifico, si prevede l'uso di queste tecnologie anche in campi medici che aprirebbero a mercati consistenti. Un campo clinico che guida un grosso mercato è quello del trattamento della infertilità, dove micro-sensori di risonanza magnetica potrebbero essere utilizzati per valutare la qualità degli embrioni fertilizzati in-vitro. Il potenziale economico di questa particolare applicazione giustifica, da sola, investimenti in questa tecnologia. Un successo in questa direzione porterebbe benefici nei trattamenti della infertilità, possibilmente rendendoli piu' accessibili e affidabili. Altre applicazioni, al momento non identificate, potrebbero esistere.
Direktlink auf Lay Summary Letzte Aktualisierung: 27.02.2018

Lay Summary (Englisch)

Lead
Nuclear Magnetic Resonance (NMR) is a powerful spectroscopic tool that allows for the inspection of chemistry in bulk matter. Renown for its bio-compatibility and non-invasive nature, NMR is today an established tool in bio-medical research and diagnostic medicine. The use of NMR at the scale of complex multicellular organisms, such as humans and mice, is already enabled and optimized by the existing commercial instrumentation. However, the use of this same technique at the scale typical of microorganisms and cells is hindered by the technical limitations of the conventional instrumentation.
Lay summary
Aim

In this project I aim at implementing prototypes of NMR probes conceived for bringing down the technique to the scale of a single human embryo. Such technology will deliver improved sensitivities at the microscopic scale combined with an exceptional degree of versatility. The use of this technology will allow, for the first time, use of NMR on signle mammalian embryos, micro-tissues derived from stem-cells, and large unicellular organisms. The technical development of the prototype will focus on key aspects such as ease of use and broad compatibility with commonly used magnetic fields. A prototype with these characteristics will allow me to perform feasibility studies on single bovine embryos and stem-cells derived material. The data retrieved will be the "Proof of Concept" that may be later used to seek partnership with an IVF clinic to move towards pre/clinical studies for the application of this technology in the field of In Vitro Fertilisation (IVF).


Scientific and societal context

Besides the evident scientific interest, applications in the medical domain that can open to consistent markets are foreseen. A specific clinical field driving a large market is the one of fertility treatment, where such NMR probes could be used to assess the quality and health of embryos for in-vitro fertilization (IVF). A success in this direction would bring great benefits in IVF treatments, possibly making them more accessible and reliable. The economic and societal potential of such application alone would justify investment in this technology; many others, currently unidentified, may exist.
Direktlink auf Lay Summary Letzte Aktualisierung: 27.02.2018

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Abstract

Nuclear magnetic resonance (NMR) methods enable non-invasive studies of intact living matter. As a well-known example, magnetic resonance imaging (MRI) scanners are today an extremely powerful clinical diagnostic tool used in hospitals worldwide. Thanks to its non-invasive properties and resolving power, NMR has been successfully employed in applications such as diagnostic imaging, microscopy, and spectroscopy of large living animals. However, at the volume scales typical of microorganisms and cells, the use of the power of NMR is hindered by the sensitivity limitations of conventional instrumentation. In this project I wish to develop the scientific tool extending NMR studies to the scale of a single human embryo. By leveraging on the single-chip probes I realized during my PhD, I will implement complementary-metal-oxide-semiconductor (CMOS) NMR detectors specifically conceived for the simultaneous investigation of up to eight individual specimens. This will allow for cutting-edge applications such as real-time metabolism monitoring, drug intake studies, and selection of microorganisms based on endogenous chemistry. Besides the evident scientific interest, we foresee that our technology will allow for applications in the medical domain, opening more consistent markets. A specific clinical field driving a large market is the one of fertility treatment, where such NMR probes could be used to assess the quality and health of embryos for in-vitro fertilization (IVF). The economic and societal potential of such application alone would justify investment in this technology; many others, currently unidentified, may exist.In this project I aim to develop a first prototype NMR instrument ready to be delivered to laboratories, protect the IP via a patent application, and begin a direct search for prospective customers. I will also use this prototype to perform feasibility studies for IVF application, placing me in the position to seek external partnerships for future pre/clinical studies. The technical development of the prototype will focus on key aspects such as ease of use and broad compatibility with commonly used magnetic fields. A prototype with these characteristics will allow me to begin feasibility studies to determine the detection power of the device and its bio-compatibility.
-