Projekt

Zurück zur Übersicht

SoHHytec- Onsite Fuel & Power Generation and Storage System using A Concentrated Integrated Photo-Electrochemical Device

Titel Englisch SoHHytec- Onsite Fuel & Power Generation and Storage System using A Concentrated Integrated Photo-Electrochemical Device
Gesuchsteller/in Tembhurne Saurabh
Nummer 178267
Förderungsinstrument Bridge - Proof of Concept
Forschungseinrichtung Laboratoire de la science et de l'ingénierie de l'énergie renouvelable EPFL - STI - IGM - LRESE
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Maschineningenieurwesen
Beginn/Ende 01.06.2018 - 31.05.2019
Bewilligter Betrag 130'000.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Maschineningenieurwesen
Elektroingenieurwesen

Keywords (7)

Solar fuel; Renewable hydrogen production; Onsite power; Onsite fuel; High efficiency solar fuel demonstration; Cost-competitive hydrogen; Clean and green energy

Lay Summary (Deutsch)

Lead
Die direkte Umwandlung von Sonnenenergie und Wasser in chemische Energie mittels photoelektrochemischer (PEC) Prozesse ist ein praktikabler Weg für die Herstellung und Speicherung erneuerbarer Energien. Eine kommerzielle PEC-Anlage muss effizient, robust, kostengünstig und nachhaltig sein. Für einen neuartigen, konzentriert und integriert, photoelektrochemischen (CIPEC) Testaufbau konnten wir unter Laborbedingungen hohe Leistungsdichten, lange Dauerhaftigkeit, hohen Wirkungsgrad und kosteneffiziente Brennstofferzeugung zeigen. Der nächste Schritt ist der Test eines Versuchsaufbaus im industriellen Massstab unter realen Bedingungen.
Lay summary

Es soll ein industrieller Prototyp mit einer H2-Kapazität von 8000 Nl/Tag sowie einer elektrischen und thermischen Leistung von 5 bzw. 6 kW gebaut werden. Geplant ist: (a) Designentwicklung und Modellierung auf Systemebene für die gleichzeitige Strom-, Wärme- und H2-Produktion, (b) Aufbau eines CIPEC-Generators inkl. weiterer Peripheriegeräte, (c) Designentwicklung und Realisierung eines Homogenisators für gleichmässige Strahlungsverteilung, (d) Integration des Prototyps in komplettes System für Erzeugung, Verteilung und Verbrauch von Energie, (e) Sicherheitsprüfung für Endbenutzer in Bezug auf Verwendung und H2-Speicherung, und (f) Durchführung von Langzeittests unter realen Bedingungen. 


Die Arbeit soll zu einem voll funktionsfähigen Prototypen für die Herstellung solarer Brennstoffe führen. Der Prototyp soll als Versuchsgrundlage für zukünftige Entwicklungen und für die Validierung neuer (PEC-)Technologien für Entscheidungsträger (Regierungsbehörden) und die Öffentlichkeit (Endbenutzer) dienen. Forschung und Industrie werden davon profitieren, da dies einen Beweis für die Realisierbarkeit von industriellen PEC-Anlagen zu wettbewerbsfähigen Kosten erbringen soll. 

Direktlink auf Lay Summary Letzte Aktualisierung: 08.02.2018

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Abstract

SoHHytec aims at manufacturing a co-generation system for the onsite cost-effective generation of hydrogen, electricity, and heat using an innovative technology based on our novel integrated photo-electrochemical device (Patent no. PCT/IB2017/055019). SoHHytec aims at providing onsite fuel and power generation systems for industrial (fertilizer, chemical, food, automotive, and steel industries), residential (rural and urban), and farming sectors. SoHHytec’s technology utilizes only the sun and water as the input resources and converts the (concentrated) solar energy into a clean fuel (hydrogen) by electrolysis of water. We provide one of the highest outputs (fuel, electricity and heat) per unit area of sunlight collection. Our integrated device shows high stability, high solar-to-fuel efficiency, and cost-effective fuel production. SoHHytec’s technology is based on 5+ years of extensive research and development work. Our patented design and operation introduces smart heat and mass transfer management and controlling strategies to photo-electrochemical water splitting. SoHHytec alleviates the current dependency on fossil fuels by bringing a clean, sustainable, and cost-effective system for fuel, heat and power production. We further remove the need for expensive hydrogen transport and electricity transmission losses by generating the fuel and power onsite. We alleviate and eliminate the grid instability problems which occur with intermittent renewable energy sources (like solar energy) as we store these resources in an energy-dense fuel instead of electricity. Our work has been recognized in the scientific and entrepreneurial communities. We have been called “an absolute game changer for realizing a sustainable hydrogen economy” by one of the biggest Swiss firms. SoHHytec has won several entrepreneurial awards/grants like Bridge PoC grant 2018, Nano-Tera’s best entrepreneurial project award 2016, EPFL Enable grant 2016, winner of Buhler energy challenge 2015. Our aim is to make the fuel of the future i.e. hydrogen, a reality of today. The Bridge grant is utilized for building a product scale prototype (14 kW) and for scale-up assessment of our product, which is currently at lab scale (280 W). We are in process of securing customers and developing a strong market in Switzerland and Europe. Our other strong market location is India where our secured first customers are looking forward to our pilot prototype following which they can directly invest in deploying our technology for their needs. We are working actively to realize our goal of a sustainable hydrogen economy. SoHHytec secured funding for starting the implementation of the product-scale prototype and for location preparation and installation of the prototype. The aim during Bridge project is the continuation of this work and, specifically, to build and test the entire system. Particularly, Bridge will enable to improve and optimize the design of the scaled CIPEC device, connect it to a compressed hydrogen storage facility, integrate it in a complete energy generation-distribution-utilization system (EPFL microgrid), and test it for an elongated time under realistic on-sun conditions. This will allow gathering extensive diagnostics data which can be used to validate our predictive modeling tool of the device and system. Additionally, research work is planned to optimize and quantify the co-generation abilities of the system, i.e. its ability to simultaneously produce heat, fuel, and electricity, which is expected to push the system efficiency up to 70%. Ultimately, the goal during the upcoming year is to build and showcase the scaled-up device of the proposed system in full functioning form, which will enable us to attract our customers and investors. The built prototype will serve as a testing playground and a technology validation site for future developments.
-