Projekt

Zurück zur Übersicht

3D Sound Induced Morphogenesis (3D-SIM)

Titel Englisch 3D Sound Induced Morphogenesis (3D-SIM)
Gesuchsteller/in Serra Tiziano
Nummer 178259
Förderungsinstrument Bridge - Proof of Concept
Forschungseinrichtung Musculoskeletal Regeneration Program AO Research Institute Davos
Hochschule AO Forschungsinstitut - AORI
Hauptdisziplin Materialwissenschaften
Beginn/Ende 01.02.2018 - 31.01.2019
Bewilligter Betrag 130'000.00
Alle Daten anzeigen

Alle Disziplinen (3)

Disziplin
Materialwissenschaften
Andere Gebiete der Ingenieurwissenschaften
Biomedical Engineering

Keywords (7)

3D printing; additive manufacturing (AM); 3D cell technology; surface acoustic wave (SAW); musculoskeletal in vitro model; hydrogels; 3Rs principle

Lay Summary (Deutsch)

Lead
Wie aus Mozart ein Organ entsteht
Lay summary
Das Ziel ist klar: In Zukunft sollen neue menschliche Organe im 3D Drucker entstehen. Weltweit arbeiten Forscher mit Hochdruck daran, diese Vision Realität werden zu lassen. Bis zum personalisierten Organ aus dem 3D Drucker ist es jedoch noch ein langer Weg, wie auch Dr. Tiziano Serra vom AO Forschungsinstitut weiss: "Die 3D Druck-Technologie hat extremes Potential. Wir befinden uns jedoch am Anfang der Reise und müssen zuerst sicherstellen, dass wir die Technologie zu 100% kontrollieren können." Sein Team hat dazu eine komplett neue Technik entwickelt. Es benutzt Schallwellen um Zellen in einem präzisen, zuvor berechneten Muster anzuordnen. Die Zellen befinden sich dabei in einer speziellen Flüssigkeit welche durch die Schallwellen angeregt wird, vergleichbar mit einem Steinwurf auf eine glatte Wasseroberfläche. Mit Hilfe von UV-Strahlung, kann die Flüssigkeit zu jedem beliebigen Zeitpunkt zu einem Gel fixiert werden (Konzept-Video: https://www.dropbox.com/s/oivk2kwg7xz8cof/3D-SIM%20Tiziano%20Serra.mov?dl=0). Insbesondere in der Erforschung von neuen Medikamenten sieht Dr. Serra grosses Potential: "Bis anhin können potentielle Inhaltsstoffe nur auf 2D Zell-Kulturen oder in Tierversuchen getestet werden. Unsere Technik ermöglicht es, gewisse Organstrukturen nachzubauen und bietet so ein neues Werkzeug um die realen Bedingungen im Labor zu simulieren." Zudem ist die schall-induzierte 3D Druck-Technologie (Englisch: 3D-SIM) deutlich einfacher und schneller in der Anwendung als herkömmliche 3D Druck-Systeme. Mit Unterstützung durch den Schweizer Nationalfonds und industriellen Partnern (Kuros Biosciences, CellSpring) arbeitet das Team um Dr. Sierra aktuell an der Entwicklung eines Druckers zur Anwendung im privaten Sektor. (credit: Sebastian Wangler) 
Direktlink auf Lay Summary Letzte Aktualisierung: 17.01.2018

Lay Summary (Italienisch)

Lead
3D Sound Induced Morphogenesis (3D-SIM)
Lay summary

Le tecnologie per colture cellulari 3D stanno rivoluzionando la scoperta di farmaci e la medicina personalizzata. Queste tecnologie permettono di creare modelli 3D che possono ricapitolare meglio l'ambiente fisiologico rispetto alle colture cellulari standard in 2D e ai modelli animali. Inoltre, i test sugli animali mostrano mancanza di riproducibilità, scarsa correlazione con gli esseri umani e sollevano importanti questioni etiche e politiche. Pertanto, le tecnologie cellulari 3D sono fondamentali per migliorare l'efficacia dello screening dei farmaci e ridurre al minimo la sperimentazione sugli animali. In questo contesto, lo sviluppo di tecniche rapide ed economiche rappresenta una delle principali sfide per le industrie farmaceutiche, biotecnologiche e gli istituti di ricerca. Qui, viene proposta una nuova tecnologia, chiamata morfogenesi indotta dal suono (3D-SIM). 3D-SIM si basa su un metodo di assemblare le cellule in 3D usando onde acustiche. Le onde possono muovere le cellule disperse in un fluido. A seconda dell'ampiezza e della frequenza delle onde, i modelli cellulari vengono prodotti e poi stabilizzati attraverso la gelificazione. Questo progetto punta a creare un prototipo di 3D-SIM che sia: 1 / facilmente implementabile in ambiente di laboratorio (piccolo, portatile, adatto a lavorare in condizioni sterili), 2 / conveniente e facile da usare, 3 / in grado di creare modelli 3D in modo veloce, con alta complessità spaziale e mantenendo la vitalità cellulare. Inoltre, per dimostrare la capacità di 3D-SIM di costruire tali modelli 3D, verrà creato un modello di osseo vascolarizzato in collaborazione con partner esperti. Inoltre, la guida di partner industriali (Kuros Biosciences, CellSpring) sarà determinante per dirigere il progetto verso le esigenze di futuri clienti. Dimostreremo il valore aggiunto di 3D-SIM sulle altre tecnologie all'avanguardia e forniremo le basi tecnologiche per la creazione di una start-up. Per capire facilmente l'idea da cui proviene questo progetto, guarda il cartone animato nel seguente link:
https://www.dropbox.com/s/oivk2kwg7xz8cof/3D-SIM%20Tiziano%20Serra.mov?dl=0 

Direktlink auf Lay Summary Letzte Aktualisierung: 17.01.2018

Lay Summary (Englisch)

Lead
3D Sound Induced Morphogenesis (3D-SIM)
Lay summary

3D cell technologies are revolutionizing drug discovery and personalized medicine. They can better recapitulate native physiological milieu in comparison to standard cell cultures and animal models. Also, animal testing shows lack of reproducibility, poor correlation with humans and raises important ethical and political issues. Thus, 3D cell technologies are fundamental to improve drug screening efficacy and minimize animal testing. Within this context, the development of fast and affordable 3D cell technologies represents one of the main challenges for pharmaceuticals, biotechnology firms and research institutions. Here, a novel 3D cell technology, named 3D Sound Induced Morphogenesis (3D-SIM), is proposed. 3D-SIM is based on an acoustic wave 3D printing method. Acoustic waves can move cells dispersed in a fluid. Depending on the amplitude and frequency of the waves, cell patterns are produced and then stabilized through gelation. 3D cell models, in a wide range of off-the-shelf gelling biomaterial matrices, can be very rapidly created in a controlled fashion by staking different layers of patterned cells. This project aims to create a 3D-SIM prototype that is: 1/ easily implemented into laboratory environment (small, portable, suitable for sterile setting), 2/ affordable and user friendly, 3/ able to create 3D cell models in a time effective manner, with sufficient spatial complexity, retaining cell viability. Furthermore, to prove the suitability of 3D-SIM technology a proof of concept of a 3D vascularized bone model will be developed in collaboration with expert partners. The guidance of industrial partners (Kuros Biosciences, CellSpring) will be instrumental in focusing the project toward customers' needs. We will demonstrate the added value of 3D-SIM over the state of the art technologies and deliver the technological foundation for the creation of a start-up company. To have a taste of the idea from where this project originated, please watch the animated cartoon in the following link: https://www.dropbox.com/s/oivk2kwg7xz8cof/3D-SIM%20Tiziano%20Serra.mov?dl=0

Direktlink auf Lay Summary Letzte Aktualisierung: 17.01.2018

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Abstract

3D cell technologies are revolutionizing drug discovery and personalized medicine. They can better recapitulate native physiological milieu in comparison to standard cell cultures and animal models. Also, animal testing shows lack of reproducibility, poor correlation with humans and raises important ethical and political issues. Thus, 3D cell technologies are fundamental to improve drug screening efficacy and minimize animal testing, in accordance with the 3Rs principle. Within this context, the development of fast and affordable 3D cell technologies represents one of the main challenges for pharmaceuticals, biotechnology firms and research institutions.Here, a novel 3D cell technology, named 3D Sound Induced Morphogenesis (3D-SIM), is proposed. 3D-SIM is based on an acoustic wave 3D printing method. Acoustic waves can move cells dispersed in a fluid. Depending on the amplitude and frequency of the waves, cell patterns are produced and then stabilized through gelation. 3D cell models, in a wide range of off-the-shelf gelling biomaterial matrices, can be very rapidly created in a controlled fashion by staking different layers of patterned cells.This project aims to create a 3D-SIM prototype that is: 1/ easily implemented into laboratory environment (small, portable, suitable for sterile setting), 2/ affordable and user friendly, 3/ able to create 3D cell models in a time-effective manner, with sufficient spatial complexity, retaining cell viability. Furthermore, in order to prove the suitability of 3D-SIM technology to build highly hierarchical tissue-like constructs with heterogeneous organization of cells and extracellular matrices, a proof of concept of a 3D vascularized bone model will be developed in collaboration with expert partner (Dr. Moretti, SIRM). In particular, functionality of the achieved proof of concept will be assessed against 3D models already used and published. The guidance of industrial partners (Kuros Biosciences, CellSpring) will be instrumental in focusing the project toward customers' needs. We will demonstrate the added value of 3D-SIM over the state of the art technologies and deliver the technological foundation for the creation of a start-up company. To have a taste of the idea from where this project originated, please watch the animated cartoon in the following link: https://www.dropbox.com/s/oivk2kwg7xz8cof/3D-SIM%20Tiziano%20Serra.mov?dl=0
-