Project

Back to overview

High-performance tandem solar cells with improved stability and cost-competitive manufacturing (POWER)

English title High-performance tandem solar cells with improved stability and cost-competitive manufacturing
Applicant Despeisse Matthieu
Number 176552
Funding scheme Bridge - Discovery
Research institution Centre Suisse d'Electronique et de Microtechnique SA
Institution of higher education Swiss Center for Electronics and Microtech. - CSEM
Main discipline Microelectronics. Optoelectronics
Start/End 01.05.2018 - 30.04.2021
Approved amount 1'500'000.00
Show all

All Disciplines (2)

Discipline
Microelectronics. Optoelectronics
Material Sciences

Keywords (6)

tandem solar cell; perovskite; efficiency; cost of electricity; photovoltaics; renewable energy

Lay Summary (French)

Lead
Les panneaux photovoltaïques (PV) ont atteint 100 GW de production annuelle, et des coûts compétitifs, permettant des coûts d’électricité solaire records inférieurs à 3 cts€/kWh, et des prix pour systèmes installés sur toit en Allemagne de l’ordre de 1'300 €/kWp. Pour ces systèmes, plus de la moitié du prix est liée aux coûts d’installation/système, et moins de la moitié pour le panneau, une augmentation de l’efficacité des panneaux PV est ainsi clé. En parallèle, le PV présente une importante opportunité pour divers marchés spécifiques, tels que le bâtiment, la mobilité, la gestion locale d’énergie. Dans ce contexte, des produits à haute efficacité démontreront aussi un avantage clé pour leur commercialisation. Des progrès sont réalisables dans les technologies actuelles jusqu’à des rendements d’environ 25 %. De nouvelles approches sont par contre nécessaires pour continuer à améliorer ces performances et définir les technologies du futur, qui seront déployées à très large échelle.
Lay summary

Notre objectif dans le projet POWER est de développer et démontrer une nouvelle approche pour la réalisation de cellules solaires très haute performance, basée sur l’ajout d’une cellule solaire en Perovskite au-dessus de cellules solaires du marché, permettant d’atteindre > 30 % de rendement de conversion. Notre projet permettra de lever les verrous scientifiques et technologiques permettant de définir des procédés de fabrication compatibles avec une industrialisation de masse à couts compétitifs pour cette nouvelle génération de cellules solaires, et de démontrer de hautes efficacités ainsi qu’une très haute durabilité des produits développés.  

Direct link to Lay Summary Last update: 10.04.2018

Responsible applicant and co-applicants

Employees

Publications

Publication
Instability of p–i–n perovskite solar cells under reverse bias
Razera Ricardo A. Z., Jacobs Daniel A., Fu Fan, Fiala Peter, Dussouillez Marion, Sahli Florent, Yang Terry C. J., Ding Laura, Walter Arnaud, Feil Adriano F., Boudinov Henri I., Nicolay Sylvain, Ballif Christophe, Jeangros Quentin (2020), Instability of p–i–n perovskite solar cells under reverse bias, in Journal of Materials Chemistry A, 1-10.
I 2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions
Fu Fan, Pisoni Stefano, Jeangros Quentin, Sastre-Pellicer Jordi, Kawecki Maciej, Paracchino Adriana, Moser Thierry, Werner Jérémie, Andres Christian, Duchêne Léo, Fiala Peter, Rawlence Michael, Nicolay Sylvain, Ballif Christophe, Tiwari Ayodhya N., Buecheler Stephan (2019), I 2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions, in Energy & Environmental Science, 12(10), 3074-3088.
I 2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions
Fu Fan, Pisoni Stefano, Jeangros Quentin, Sastre-Pellicer Jordi, Kawecki Maciej, Paracchino Adriana, Moser Thierry, Werner Jérémie, Andres Christian, Duchêne Léo, Fiala Peter, Rawlence Michael, Nicolay Sylvain, Ballif Christophe, Tiwari Ayodhya N., Buecheler Stephan (2019), I 2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat–light soaking conditions, in Energy & Environmental Science, 12(10), 3074-3088.
Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite–Silicon Tandems
Kamino Brett A., Paviet-Salomon Bertrand, Moon Soo-Jin, Badel Nicolas, Levrat Jacques, Christmann Gabriel, Walter Arnaud, Faes Antonin, Ding Laura, Diaz Leon Juan J., Paracchino Adriana, Despeisse Matthieu, Ballif Christophe, Nicolay Sylvain (2019), Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite–Silicon Tandems, in ACS Applied Energy Materials, 2(5), 3815-3821.
25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p -type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts
Nogay G., Sahli F., Werner J., Monnard R., Boccard M, Despeisse M., Haug F-J., Jeangros Q., Ingenito A., Ballif C. (2019), 25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p -type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts, in ACS Energy Letters, 4(4), 844-845.

Collaboration

Group / person Country
Types of collaboration
University of Potsdam Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Pasan Switzerland (Europe)
- Industry/business/other use-inspired collaboration
Solaronix Switzerland (Europe)
- Industry/business/other use-inspired collaboration
Meyer Burger Switzerland (Europe)
- Industry/business/other use-inspired collaboration
University of Cambridge Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Flisom Switzerland (Europe)
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
International Conference on Perovskite Solar Cells and Optoelectronic (PSCO) Talk given at a conference Scalable PVD-CVD deposition of perovskite absorbers 02.10.2019 Lausanne, Switzerland Moser Thierry;
PSCO Talk given at a conference Perovskite-silicon multi-junction solar cells: progresses, opportunities and future market challenges 01.09.2019 Lausanne, Switzerland Ballif Christophe;
EU-PVSEC Talk given at a conference High-Efficiency Monolithic Perovskite/Silicon Tandem Solar Cells 24.10.2018 Bruxelles, Belgium Ballif Christophe;


Communication with the public

Communication Title Media Place Year
Video/Film The Bridge Power Project International Western Switzerland 2019
Talks/events/exhibitions Visite Alumni EPFL German-speaking Switzerland Western Switzerland Italian-speaking Switzerland Rhaeto-Romanic Switzerland 2018

Associated projects

Number Title Start Funding scheme
197006 Protective, pAssivating & selective transport layers in PErovskite/c-Si Tandem solar cells (PAPET) 01.11.2020 Project funding (Div. I-III)
153916 PV2050: Building blocks for Next Generation Multi-Junction Solar Cells 01.12.2014 NRP 70 Energy Turnaround

Abstract

The POWER Project aims to develop a new generation of solar cells by combining emerging perovskite cells with market-proven CIGS and crystalline silicon cells. By combining scientific excellence with innovation and production oriented development, the project will pave the way towards the realization of cost effective solar cells with >30% performance, surpassing 25 years lifetime.Thanks to the tremendous potential of solar energy, photovoltaics (PV) will have to play a major role in the transition to a sustainable society. To make PV fully competitive with nuclear and fossil fuels, PV module efficiency has to be further enhanced while keeping costs low. As current PV technologies on the market are already highly optimized, limited performance gains are expected. Disruptive approaches are required for a true leap in efficiency. The most promising and viable approach to boost the efficiency of commercial solar cells beyond 30% is to form a tandem cell, combining existing low-bandgap solar cells with a high-bandgap absorber. The perovskite PV technology has recently emerged as an ideal high-bandgap option, due to its potentially high performance and low fabrication costs. Throughout the Nano-tera.ch program, first remarkable prototypes of such tandem cells could already be reported by members of our consortium, although still with an efficiency well below their performance potential, on lab scale size, with limited stability, and typically by using expensive materials and non-scalable processing steps. These aspects are substantial hurdles to bring these tandem cells to the market.The science-based POWER Project aims to overcome these hurdles, by generating in-depth knowledge on novel perovskite materials and interfaces as well as on their dedicated integration into tandem devices, targeting strongly improved device performance and stability, and defining first industrially-viable processes and materials. Specifically, high-bandgap perovskite materials and top cells with transparent front and rear electrodes will first be thoroughly characterized and optimized. Then, two technological demonstrators will be developed: perovskite/silicon tandems for high-performance power generation and perovskite/CIGS tandems on flexible substrates, demonstrating all-thin-film cells for lightweight PV modules. These tandems will be up-scaled using fully scalable fabrication methods. New conformal deposition processes allowing the preparation of cells on rough, optically favorable surfaces will be realized. The expensive doped organic semiconductors and precious metals often used will be replaced by lower-cost and more stable alternatives. Industrial metallization, cell interconnection and encapsulation schemes will be adapted and optimized for tandem cells, replacing the currently used low-throughput and high-cost approaches. Finally, extensive accelerated aging tests will be performed, enabling a direct comparison with other PV technologies. The consortium will strive for industrial implementation of the project results, including spin-out or technology transfer to existing Swiss industries, with a potential worldwide impact on future clean electricity generation for a sustainable future.
-