Back to overview

Neural and computational mechanisms of regularity extraction in the human brain

English title Neural and computational mechanisms of regularity extraction in the human brain
Applicant Tzovara Athina
Number 174451
Funding scheme Advanced Postdoc.Mobility
Research institution Department of Psychology University of California
Institution of higher education Institution abroad - IACH
Main discipline Neurophysiology and Brain Research
Start/End 01.11.2017 - 31.05.2019
Show all

All Disciplines (2)

Neurophysiology and Brain Research
Neurology, Psychiatry

Keywords (5)

prediction errors; awareness; intracranial electroencephalography; auditory regularities; neuroscience

Lay Summary (French)

Dans notre quotidien, nous sommes constamment exposé(e)s à des stimuli sensoriels, comme des images ou des sons. Souvent, ces stimuli ne sont pas dus au hasard mais suivent des schémas et règles cycliques, par exemple les notes qui forment une chanson. Le but de ce projet est d’étudier les mechanisms neuronaux qui nous permettent d’extraire des règles de notre environnement et d’anticiper des événement futurs sur la base des expériences passées.
Lay summary

Notre cerveau crée et maintient un modèle de notre environnement et l'utilise pour anticiper des événements futurs, qui est mis à jour chaque fois que nous sommes exposé(e)s à un nouvel événement qui dévie des prédictions de notre modèle interne. Cela peut arriver implicitement, par exemple lorsque nous entendons une chanson à la radio sans y prêter attention, ou explicitement, par exemple lorsque nous essayons d'apprendre à jouer une nouvelle œuvre musicale. Ce projet vise à dissocier les mécanismes neuronaux qui nous permettent d'apprendre des séquences d'événements selon notre niveau d’attention et la complexité de ces événements.

D’autres études ont identifié que plusieurs régions du cerveau, principalement dans le cortex cérébral, maintiennent un modèle de l'environnement et détectent des événements inattendus. Ce projet examinera davantage comment les régions sous-corticales contribuent à l'extraction des règles et étudiera leurs interactions avec les régions corticales.

Les mécanismes neuraux de détection des régularités sont perturbés chez les patients avec des troubles de conscience, par exemple des patients comateux ou dans un état végétatif. Mieux comprendre la manière dont le cerveau humain extrait des régularités et détecte leurs violations pourra aider à étudier de par le futur comment les stimuli de l’environnement sont traités dans des états de conscience minimale.

Direct link to Lay Summary Last update: 16.10.2017

Responsible applicant and co-applicants


Human Pavlovian fear conditioning conforms to probabilistic learning
Tzovara Athina, Korn Christoph W., Bach Dominik R. (2018), Human Pavlovian fear conditioning conforms to probabilistic learning, in {PLOS} Computational Biology, 14(8), 1006243-1006243.
The personal data is political
Greshake TzovarasB, TzovaraAthina, The personal data is political, Springer, -, n.a..

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Annual meeting of the Organization for Human Brain Mapping Poster Reconstructing neural oscillations from the human hippocampus & amygdala using MEG 17.06.2018 Singapore, Singapore Tzovara Athina;
International Learning and Memory conference Talk given at a conference Implicit discrimination of auditory regularities in the human hippocampus 18.04.2018 Irvine, United States of America Tzovara Athina;

Knowledge transfer events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved


In our everyday lives we are constantly exposed to streams of sensory information such as images, speech or music, which very often do not occur in a random way but follow statistical rules and repetitive patterns. Using past experience to anticipate future events is a fundamental skill for our survival, and is often posited to depend on prediction errors (PEs), defined as the difference between expected and received information. PEs are used for updating an internal model of the environment every time that expectations don’t match new experience. Perception of regularities and subsequent model update can take place explicitly, for example when trying to learn and reproduce a music piece, or implicitly, when recognising a song from the first few notes, while our attention is distracted to other tasks. Previous studies have shown that violations of anticipated events manifest in a wide-spread network of brain regions, spanning from temporo-parietal and prefrontal cortical areas to the hippocampus and amygdala. Neural responses within this network are modulated by attention and awareness, or by the structure of environmental stimuli and have been well-studied at a cortical level, but their subcortical components remain under-explored, possibly because of the difficulty to record neural activity from deep brain structures non-invasively. The goal of this project is to provide mechanistic explanations on how violations of predicted events are manifested at different levels of a neural hierarchy as a function of the events’ structure and the participant's attention. A second goal is to elucidate the role of subcortical brain regions in violation detection. To this aim, I propose a series of novel experiments, designed to test the formation of sensory prediction errors in the brain using invasive electrophysiological recordings. These allow measuring neural activity directly from cortical and sub-cortical brain regions in epileptic patients undergoing neurosurgical procedures.In summary, this project promises to shed light on neurobiological mechanisms of human perception, which have been associated with consciousness and are impaired across several pathologies and developmental stages.