Projekt

Zurück zur Übersicht

Open-Source Platform for Efficient FFT-based Continuum Mesoscale Modelling

Titel Englisch Open-Source Platform for Efficient FFT-based Continuum Mesoscale Modelling
Gesuchsteller/in Junge Till
Nummer 174105
Förderungsinstrument Ambizione
Forschungseinrichtung Laboratoire de modélisation mécanique multi-échelle EPFL - STI - IGM - LAMMM
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Andere Gebiete der Ingenieurwissenschaften
Beginn/Ende 01.10.2017 - 30.09.2021
Bewilligter Betrag 783'958.00
Alle Daten anzeigen

Alle Disziplinen (4)

Disziplin
Andere Gebiete der Ingenieurwissenschaften
Informatik
Maschineningenieurwesen
Bauingenieurwesen

Keywords (12)

Open science; Scientific computing; Multiscale modelling; Mesoscale modelling; Fast fourier transform; Reproducible science; Open data; Computational homogenisation; Computational solid mechanics; Scientific software development; Mesoscale-aware modelling; Computational materials science

Lay Summary (Französisch)

Lead
En mécanique, l'homogénéisation numérique est un outil pour modéliser des cellules périodiques de matériaux hétérogènes. De telles cellules homogénéisées peuvent ensuite être utilisé dans des analyses dites multi-échelles, pour prédire le comportement de structures en matériaux composites, tel que par exemple des structures en béton, céramique, bois, etc. Les coûts importants des calculs multi-échelles sont l'obstacle principal à leur application répandue.
Lay summary
Objectifs visés par le projet
Le but principal de ce projet est de développer µSpectre, une plateforme open-source pour la homogénéisation numérique utilisant une nouvelle méthode extrêmement efficace basée sur la transformée de Fourier numérique (FFT).

Nous avons choisi le modèle de développement open-source pour encourager des collaborations et pour promouvoir la science réellement reproductible. Initialement, l'application principale de µSpectre sera la prédiction de l'endommagement de structures en béton par la réaction alcali-granulat (ASR) qui affecte environ 20% des barrages hydroélectriques suisses.

Contexte scientifique et sociétal du projet de recherche
Le projet mettra à disposition de la communauté de mécanique numérique des milieux continus un outil polyvalent pour l'analyse multi-échelles de structures en matériaux composites et contribuera à la compréhension de l'évolution de l'endommagement de structures en béton dû à l'ASR.
Direktlink auf Lay Summary Letzte Aktualisierung: 18.09.2017

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Computational Solid Mechanics Laboratory (LSMS) Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
Scientific IT and Application Support (SCITAS) Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern
Laboratory for Multiscale Mechanics Modeling (LAMMM) Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Experimental Centre, Civil Engineering, Czech Technical University in Prague Tschechische Republik (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern
Group of Prof. Jan Zeman, Czech Technical University in Prague Tschechische Republik (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern
Laboratory for Construction Materials (LMC), EPFL Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Simulation Group Prof Lars Pastewka, Imtek, Universität Freiburg Deutschland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
WCCM (13th World Congress in Computational Mechanics) Vortrag im Rahmen einer Tagung Fast Spectral Solvers Without Linear Reference Medium 22.07.2018 New York, NY, Vereinigte Staaten von Amerika Junge Till;
ECCM (6th European Conference on Computational Mechanics) Vortrag im Rahmen einer Tagung Fast spectral Solvers Without Linear Reference Medium 11.06.2018 Glasgow UK, Grossbritannien und Nordirland Junge Till;
MEGA.seminar EPFL (MEchanics GAthering Seminar Series) Einzelvortrag FFT-based Homogenisation without Linear Reference Media 31.05.2018 EPFL, Schweiz Junge Till;
Tech meetig at Ansys Zürich Einzelvortrag FFT-based Homogenisation without Linear Reference Media 03.05.2018 Ansys, Zürich, Schweiz Junge Till;
Invited seminar in the Mechanics Department of ETHZ (MAVT) and the group of Prof Dennis Kochmann Einzelvortrag Unconditional Convergence for FFT-based Homogenisation 30.01.2018 ETHZ, Schweiz Junge Till;
Seminar in the Simulation group of Prof Lars Pastewka at the IMTEK in the University of Freiburg Einzelvortrag FFT-Based Homogenisation without Linear Reference Media 19.01.2018 University of Freiburg, Deutschland Junge Till;


Selber organisiert

Titel Datum Ort
1 week research visit from Prof Jan Zeman 04.09.2018 EPFL, Schweiz
Research visit at the University of Freiburg 19.02.2018 University of Freiburg, Deutschland

Anwendungsorientierte Outputs

Software

Name Jahr
µSpectre 2017


Abstract

Computational continuum mesoscale modelling (or computational homogenisation) involves computing the overall response of a periodic unit cell of material, a so-called representative volume element (RVE), to a given average (i.e., macroscale) strain. Typically, this is done using the finite element method (FEM), even though it is neither able to leverage its main strength, the trivial handling of complex geometries, nor otherwise particularly well suited for periodic problems. An alternative method for modelling periodic RVEs is based on the fast Fourier transform (FFT), developed by Moulinec and Suquet. This method has evolved substantially over the last two decades, with particularly important and currently underused improvements in the last two years.This new method for the solution of the core problem of computational homogenisation is significantly superior to the FEM in terms of computational cost and memory footprint for most applications, but has not been exploited to its full potential. One major obstacle to the wide adoption of the method is the lack of a robust, validated, open-source code. Hence, researchers choose the well-known and tested FEM that has numerous commercial, open-source or legacy in-house FEM codes.The goal of this project is to develop µSpectre, an open-source platform for efficient FFT-based continuum mesoscale modelling, which will overcome the major obstacle. The project is designed to i) establish a de facto standard implementation for the spectral RVE method (SRM) that subsequent implementations can be compared to, in order to concentrate the development effort of all interested parties in the field, in a similar way as, for instance, LAMMPS does for molecular dynamics modelling, ii) demonstrate the performance of the SRM by applying it to the simulation of alkali-silica reaction (ASR) damage evolution in concrete in a fully coupled, macro/meso multiscale simulation complementing and accelerating previous prohibitively expensive FEM-based attempts, iii) make µSpectre widely accessible for users by providing language bindings for virtually all relevant popular computing platforms and comprehensive user’s manuals in order to help widespread adoption, and, finally iv) make µSpectre eminently modifiable for developers by developing it in the open, with a clean architecture and extensive developer’s documentation in order to maximise outside contributions.Furthermore, this project places great importance on truly reproducible and verifiable science with a credible open data strategy in the firm belief that these qualifiers help to reach and guarantee a high level of scientific quality, difficult to reach otherwise, and to attract outside collaborations and contributions that help boost the scientific output beyond what can be achieved by a two person team (principal investigator (PI) and PhD student). To reach these objectives, the PI i) outlines in detail an open Bazaar-style software development plan designed to maximise external visibility and usability in order to attract valuable collaborations that help to reach the ambitious goals of µSpectre, and ii) intends to pioneer the use of containerised HPC which allows guaranteed reproducibility of simulations, thus making obsolete the storage of simulation results, enabling the application of credible open data policies when using µSpectre without exorbitant storage costs. In addition, ASR is a leading deterioration process of concrete structures and is as such an academic and private sector research priority, particularly in Switzerland. Hence, the application of µSpectre to ASR is likely to be widely used and significantly advance the field.
-