Zurück zur Übersicht

Millimeter-wave on-chip wireless-optical transceivers for 5G wireless communications

Gesuchsteller/in Burla Maurizio
Nummer 173996
Förderungsinstrument Ambizione
Forschungseinrichtung Institut für elektromagnetische Felder ETH Zürich
Hochschule ETH Zürich - ETHZ
Hauptdisziplin Mikroelektronik, Optoelektronik
Beginn/Ende 01.10.2017 - 30.09.2021
Bewilligter Betrag 825'635.00
Alle Daten anzeigen

Alle Disziplinen (2)

Mikroelektronik, Optoelektronik

Keywords (7)

Antennas; Microwave engineering; Microwave photonics; Integrated optics; Wireless communications; Signal processing; True-time-delay

Lay Summary (Italienisch)

In sintesi:Il numero di dispositivi mobili senza fili connessi ad internet cresce nel tempo ad un ritmo vertiginoso. Si prevede che piu` di venti miliardi di dispositivi saranno connessi entro il 2020. Al contempo, la tecnologia di comunicazione senza fili non segue la stessa progressione e i collegamenti radio vedono una capacita` molto inferiore a quella che sarebbe consentita dalla rete in fibra ottica, che costituisce la parte principale dell'infrastruttura della rete, creando di fatto un cosiddetto "collo di bottiglia wireless". Il progetto ha l'obiettivo di creare nuovi dispositivi ricetrasmettitori che consentano, tramite l'integrazione su singolo chip di componenti ottici ed elettronici ad alte prestazioni, velocita` di trasmissione senza fili largamente superiori a quelle attuali.
Lay summary
Soggetto e obiettivo:
L'obiettivo del progetto e` creare dei circuiti che consentano di aumentare radicalmente le velocita` di trasmissione senza fili per le reti mobili di nuova generazione e, di fatto, rimuovere il cosiddetto "wireless bottleneck". L'approccio si basa sulla creazione di una nuova piattaforma di fabbricazione di circuiti che unisce alcune delle tecnologie ottiche ed elettroniche piu` veloci disponibili ad oggi. Tali circuiti consentiranno di convertire direttamente i segnali in fibra ottica della rete internet in segnali senza fili che possano essere trasmessi e ricevuti da dispositivi mobili.

Contesto socio-scientifico:
Il lavoro permettera` di creare una tecnologia e dimostrare il funzionamento di nuovi ricetrasmettitori radio-ottici integrati in grado di fornire velocita` di trasmissione senza fili centinaia di volte superiori a quelle attuali. Questo avra` impatto in molti ambiti della vita quotidiana consentendo, oltre a connessioni dati molto veloci, anche molte applicazioni innovative ad esempio alla telemedicina, realta` aumentata, ed "internet of things".
Direktlink auf Lay Summary Letzte Aktualisierung: 17.10.2017

Lay Summary (Englisch)

Boosting the wireless speed using tiny optical chips: new chips to break the speed bottleneck of today's wireless networks
Lay summary
More than twenty billion mobile devices will be connected to the internet by 2020 – more than the number of people on earth. And all of them will want to connect to the internet using wireless connection and without any cables. As more and more people want to connect with faster and faster speeds, the current wireless technology cannot keep up with the growing speed demand. As a consequence, we are experiencing a real "wireless bottleneck".

In contrast, the backbone of the internet is not wireless – it consists of a global network of  fiber optic cables that connect the entire planet. These wires have a huge data transport capacity – just one of them would be enough to carry the content of hundreds of blue-ray movies in one second.

Wireless connection speeds are miles away from the ones that would be allowed optical networks – with current technology, it would take us more than 1 hour just to download a single blue-ray movie. We need a radically new wireless technology to bridge this gap.

Through this project, we develop novel chips that integrate together the fastest electronics and photonics in a single device to create much faster converters of optical signals to wireless signals and vice-versa. In particular, the very broad bandwidth of photonics can assist the processing of radio signal with an extremely fast speeds. The goal is to deploy these chips in next generation networks and provide hundred times faster wireless speeds for everybody.

Direktlink auf Lay Summary Letzte Aktualisierung: 17.10.2017

Verantw. Gesuchsteller/in und weitere Gesuchstellende



The goal of this project is to create the first integrated microwave photonics (MWP) transceiver, operating at mm-wave frequencies, with direct optical-to-wireless and wireless-to-optical conversion and beam steering capability.Next generation 5G wireless networks need unprecedented data rate. Purely incremental evolution of current technologies is not sufficient to reach the envisioned network capacity. Radically novel approaches are therefore needed, namely, access to millimeter wave spectrum, use of many small cells, and beam focusing capability to compensate the high free-space path loss (FSPL) at mm-wave frequencies.Due to high transmission losses at these frequencies, optical technologies are needed for signal distribution. This creates a need for conversion from optical to electrical (wireless) signals. Literature showed that direct optical to mm-wave and sub-THz conversion has major advantages in terms of low conversion losses, simplicity with potential low cost.Current state-of-the art optical-to-wireless transmitters have already shown how to integrate photodiodes and antenna on a single package. But such systems neither take advantage of monolithic integration nor do they comprise integrated electronic amplifiers. The wireless range is thus very limited and functionality is rather low since hybrid system are hard to scale. Yet, beam-focusing and steering capability are needed to overcome the high free-space loss at mm-wave frequencies. Likewise, state-of-the art wireless-to-optical receivers require antennas, mm-wave amplifiers and modulators to convert the signals from the wireless domain back to the optical domain. Yet, current solutions are expensive and complex since they are based on discrete off-the shelf components. These limitation preclude the spread to a large-scale application in 5G wireless communications, where many small cells will be required.In this project I will target the creation of a novel enabling technology for high capacity millimeter-wave and THz wireless communications, through direct integration of electronics, photonics and antennas on chip. We will overcome both the range and scaling (cost) issue by monolithic integration of photodiodes, high-speed amplifiers and antennas on a single mm-wave transmitter chip. In addition, we will add true-time-delay for broadband beam steering. In the receive side, we will integrate antennas with high-speed electronics and broadband modulators on a single chip. The project is arranged to overcome the bottlenecks of wireless communications, opening the path towards ultra-broadband transceivers for direct optical-to-wireless and wireless-to-optical conversion at a low unit cost and deployable at large scale.