Back to overview

High Resolution Nonscanning Multiphoton Polarimetric Microscope (PolarNon)

English title High Resolution Nonscanning Multiphoton Polarimetric Microscope (PolarNon)
Applicant Timofeeva Mariia
Number 173829
Funding scheme Bridge - Proof of Concept
Research institution
Institution of higher education ETH Zurich - ETHZ
Main discipline Microelectronics. Optoelectronics
Start/End 01.07.2017 - 31.12.2018
Approved amount 192'810.00
Show all

All Disciplines (5)

Microelectronics. Optoelectronics
Material Sciences
Other disciplines of Physics
Condensed Matter Physics
Electrical Engineering

Keywords (11)

semiconductor industry; nanotechnology; nonscanning multiphoton polarimetric microscope; second-harmonic generation; crystal structure; microscopes market; multiphoton scanning laser microscope; per-pixel analysis; nonlinear optics; corrosion; nondestructive testing

Lay Summary (German)

Das Multiphotonenmikroskop (PolarNon) ist ein teures Gerät sowie dessen Software. Es ermöglicht die Untersuchung von Materialeigenschaften durch die polarisationsabhängige Messung von nichtlinearen Signalen ohne Scannen wie es in kommerziellen Systemen verwendet wird. Das Multiphotonenmikroskop hat den Vorteil gegenüber anderen Mikroskopen, dass es keine speziellen Probenvorbereitung oder spezielle Messbedingungen benötigt wie zum Beispiel niedrige Temperaturen, Vakuum oder ultradünne Substrate. Das Herzstück dieser vorgeschlagenen Lösung ist eine Methode, die eine Analyse der polarisierten nicht linearen Signalbilder pro Pixel mit einem Klick vornimmt.
Lay summary

Für die Qualitätskontrolle ist die Materialanalyse eines der Schlüsselelemente zur Verbesserung der Qualität und der Kosten des Herstellungsprozesses. Die Charakterisierung der Materialeigenschaften wird in der Medizin-, Elektronik- und Photonik-Industrie eingesetzt. In meinem Projekt, habe ich eine kostengünstige Hard- und Softwarelösung zur Charakterisierung von Materialqualität und Strukturschäden entwickelt. Diese Lösung kann sogar in der Fertigungslinie angewendet werden. Mit dem PolarNon, können die wichtigsten Einschränkungen der derzeit auf dem Markt verfügbaren Lösungen für die zerstörungsfreie Analyse von Materialien überwunden werden. In meinem Projekt habe ich die Fähigkeiten des entwickelten PolarNon-Systems demonstriert, um die Polarisationabhängigkeit der Frequenzverdopplung abzubilden. Durch die Abbildung der Polarisationabhängigkeit der Frequenzverdopplung konnten verschiedene Arten von Fehlern zerstörungsfrei getestet werden: Risse in Halbleitermaterialien, Korrosionskörner, Punktdefekte in 2D-Materialien und Grenzflächen zwischen Materialien.

Direct link to Lay Summary Last update: 15.02.2019

Responsible applicant and co-applicants



III-V nanoantennas fabricated from nanowires for enhanced nonlinear optical signal at Mie resonances
Timofeeva Maria, Renaut Claude, Timpu Flavia, Shtrom Igor, Bouravleuv Alexey, Lang Lukas, Cirlin George, Grange Rachel (2018), III-V nanoantennas fabricated from nanowires for enhanced nonlinear optical signal at Mie resonances, in Nanophotonics, Strasbourg, FranceSPIE, SPIE Photonics Europe.
Anapoles in Free-Standing III–V Nanodisks Enhancing Second-Harmonic Generation
Timofeeva Maria, Lang Lukas, Timpu Flavia, Renaut Claude, Bouravleuv Alexei, Shtrom Igor, Cirlin George, Grange Rachel (2018), Anapoles in Free-Standing III–V Nanodisks Enhancing Second-Harmonic Generation, in Nano Letters, 18(6), 3695-3702.


Group / person Country
Types of collaboration
Laboratory of Semiconductor Materials, EPFL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
St. Petersburg National Academic University of RAS Russia (Europe)
- Research Infrastructure
The International Research Center Nanophotonics and Metamaterials, ITMO University Russia (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Durability of Engineering Materials, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
MRS Fall meeting & Exhibit Poster napoles in Disk Nanoantennas Fabricated from III-V Nanowires for Enhancement Second Harmonic Generation 25.11.2018 Boston, United States of America Timofeeva Mariia;
SPIE Photonics Europe 2018 Talk given at a conference III-V nanoantennas fabricated from nanowires for enhanced nonlinear optical signal at Mie resonances 22.04.2018 Strasbourg, France Timofeeva Mariia;

Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
PolarNon presentation for ESTEC Talk 10.12.2018 Telecom conference with Netherlands , Switzerland Timofeeva Mariia;
Swiss Space Center Annual Assembly Poster 06.12.2018 Zurich, Switzerland Timofeeva Mariia;
PolarNon presentation for RUAG Talk 04.12.2018 Zurich, RUAG, Switzerland Timofeeva Mariia;
CSEM industry day Performances, exhibitions (e.g. for education institutions) 07.11.2018 Neuchâtel, Switzerland Timofeeva Mariia;
Photonics seminar Talk 27.08.2018 New York, Manhattan, United States of America Timofeeva Mariia;
Innovation Village, SPIE Photonics Europe Performances, exhibitions (e.g. for education institutions) 23.04.2018 Strasbourg, France Timofeeva Mariia;

Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) PolarNon advertisement flyer International 2018


Title Year
Early stage entrepreneur award (travel grant), Startup Challenge, SPIE Photonics West 2019 2019
Top 20 in Spark award of ETH (the most promising invention at ETH Zurich resulting in a patent application in the past year), Zurich, 2019
Best poster award, MRS Fall meeting and exhibition, Boston, US 2018


Title Date Number Inventor Owner

Associated projects

Number Title Start Funding scheme
179099 Nonlinear Perovskite Nanomaterials for Metasurfaces and Integrated Photonics 01.01.2019 SNSF Professorships
179966 All-dielectric nanowires as building blocks for nonlinear photonics 01.01.2019 Ambizione


The analysis of materials is a key element for quality control and properties characterization in medical, electronic and photonic industry. Currently, fluorescence imaging, electron microscopy and micro-photoluminescence studies are the most common tools for material analysis in research and industry areas. These methods require complex sample preparation and special environment conditions that limits their application and increases cost of analysis.I propose to use nonlinear optical responses of materials to avoid staining procedure for fluorescence imaging, ultrathin samples preparation for transmission electron microscopy, or low temperature environment for photoluminescence. Indeed, nonlinear optical microscopy used infrared light instead of visible light, allow for deep penetration due to less scattering and natural spectral filtering, since the detection is at different wavelength than the excitation. It is a very powerful technique for many biological samples and common materials for nanotechnology, such as III-V and II-VI semiconductors, perovskite and other materials with non-symmetric crystal structure. Moreover, nonlinear responses are strongly dependent on material properties, and can be a very effective feature to study their different characteristics. The potential of using nonlinear optical methods in material science is very high, but existing solutions are not convenient enough in terms of equipment, sample preparation and human resources costs.In this project, I will build a nonlinear microscope prototype PolarNon - composed of a cost-effective hardware and software solution for studying material properties by measuring polarization dependency of nonlinear responses without the need to scan the light as in current commercial systems. The PolarNon system does not require special sample preparation or measurement conditions, like low temperatures, vacuum or ultrathin substrates. The core of the proposed solution is my method of per-pixel analysis of images of polarized nonlinear responses to reconstruct the material crystalline properties down to the pixel resolution with one-click. I already successfully applied this approach to several material science problems for predicting samples inner structure. For instance, I applied it to precisely characterize crystal structures variations within single gallium arsenide nanowires. I believe that the proposed solution can be effectively applied in industry and research. To achieve that I will assemble a compact nonlinear microscope with automatized stages and enhance the software for the per-pixel analysis with a user-friendly interface. The Bridge program will help me to prepare the commercial prototype with hardware and software components, to analyse its commercial potential and to advertise it at conferences and exhibitions dedicated to photonic or material sciences.