Project

Back to overview

Direct determination of early Earth's orbital parameters through high-precision age determination of sedimentary cycles in Archean and Proterozoic sedimentary deposits

English title Direct determination of early Earth's orbital parameters through high-precision age determination of sedimentary cycles in Archean and Proterozoic sedimentary deposits
Applicant Schaltegger Urs
Number 169086
Funding scheme Project funding (Div. I-III)
Research institution Département des sciences de la Terre Université de Genève
Institution of higher education University of Geneva - GE
Main discipline Geochronology
Start/End 01.01.2017 - 31.12.2018
Approved amount 250'616.00
Show all

Keywords (9)

zircon; orbital parameters; Early solar system; Milankovic cycles; sedimentary cycles; Proterozoic; geochronology; vocanic ash beds; U-Pb dating

Lay Summary (German)

Lead
Wie lange dauerte ein Jahr vor 2.5 Milliarden Jahren ? Das Forschungsvorhaben beabsichtigt, die orbitalen Parameter des frühen Sonnensystems (Exzentrizität der Erdumlaufbahn, Präzession und Obliquität der Erdachse) anhand von uralten Sedimenten zu rekonstruieren.
Lay summary

Inhalt und Ziel des Forschungsprojekts

In Australien, Brasilien und Kanada sind ungestörte und hervorragend erhaltene sedimentäre Sequenzen proterozoischen Alters (2.5, 1.9 und 1.4 Milliarden Jahre) aufgeschlossen. Erstaunlicherweise sind in diesen Sedimenten zyklische Ablagerungen deutlich erhalten. In diesen Becken sind auch vulkanische Aschenlagen mit den Sedimenten zwischengelagert. Mit hochpräzisen U-Pb Altersbestimmungen am Mineral Zirkon (ZrSiO4) lässt sich das Ablagerungsalter dieser Aschen präzise bestimmen. Datierung mehrerer Aschen in einer zyklisch abgelagerten sedimentären Sequenz erlaubt uns die Dauer der darin erkennbaren Zyklen bestimmen und festzulegen ob es sich um sogenannte Milankovic Zyklen handelt.

Kontext

Diese innovative Studie ist nur wegen der herausragenden analytischen Präzision in U-Pb Altersbestimmung des Labors an der Universität Genf möglich. Die Altersdaten werden in numerische Modellierungen von Sternsystemen (z.B. von extrasolaren planetaren Systemen) eingesetzt werden können, in Zusammenarbeit mit Forschern des Exzellenzprogramms „PlanetS“ an der Universität Genf. Möglicherweise erhalten wir neue Erkenntnisse über die Entwicklung der Mond-Umlaufbahn die eine unabhängige Neuberechnung des Entstehungsalters des Monds erlauben.

Direct link to Lay Summary Last update: 23.09.2016

Responsible applicant and co-applicants

Employees

Publications

Publication
Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction
Percival L. M. E., Davies J. H. F. L., Schaltegger U., De Vleeschouwer D., Da Silva A.-C., Föllmi K. B. (2018), Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction, in Scientific Reports, 8(1), 9578-9578.
Investigating Complex Isochron Data Using Mixture Models
Davies Joshua H. F. L., Sheldrake Tom E., Reimink Jesse R., Wotzlaw Jörn-Frederik, Moeck Christian, Finlay Alex (2018), Investigating Complex Isochron Data Using Mixture Models, in Geochemistry, Geophysics, Geosystems, 19.
Zircon petrochronology reveals the timescale and mechanism of anatectic magma formation
Farina Federico, Dini Andrea, Davies Joshua H.F.L., Ovtcharova Maria, Greber Nicolas D., Bouvier Anne-Sophie, Baumgartner Lukas, Ulianov Alexey, Schaltegger Urs (2018), Zircon petrochronology reveals the timescale and mechanism of anatectic magma formation, in Earth and Planetary Science Letters, 495, 213-223.
Evaluating baddeleyite oxygen isotope analysis by secondary ion mass spectrometry (SIMS)
Davies J.H.F.L., Stern R.A., Heaman L.M., Moser D.E., Walton E.L., Vennemann T. (2018), Evaluating baddeleyite oxygen isotope analysis by secondary ion mass spectrometry (SIMS), in Chemical Geology, 479, 113-122.

Collaboration

Group / person Country
Types of collaboration
University of Alberta, Edmonton Canada (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
University of Utrecht Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
European Institute for Marine Studies, Brest France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
University of Lausanne Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Monash University/Geneva University Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Goldschmidt Conference Poster Short-duration of silicic magmatism from the Paraná Magmatic Province, constrained by high-precision U-Pb zircon geochronology 12.08.2018 Boston, United States of America Davies Joshua; Schaltegger Urs;
Goldschmidt Conference Talk given at a conference The Late Devonian Mass Extinction: New Geochemical and Geochronological Insights 12.08.2018 Boston, United States of America Davies Joshua; Schaltegger Urs;
NAC (Nederlands Aardwetenschappelijk Congres) Talk given at a conference Milankovitch cycles in Banded Iron Formation: characteristic outcrop patterns in the Paleoproterozoic Kuruman Formation. 15.03.2018 Veldhoven, Netherlands Davies Joshua; Schaltegger Urs;


Associated projects

Number Title Start Funding scheme
182007 Temporal coupling of environmental change, volcanism and evolution in the geological past through high-precision geochronology 01.01.2019 Project funding (Div. I-III)

Abstract

The interactions between the Sun, the Earth, the Moon and the other planets of our solar system have manifold influences on the environment. The combination of the eccentricity of Earth's orbit as well as the precession and obliquity of its spin axis produce cyclic changes in the insolation curve at a given spot on Earth, known as Milankovic cycles (Milankovic, 1941), and are the major driver of the cyclic changes of our climate. These cycles can be reconstructed back in time from bedded sedimentary deposits that record the orbital parameters through strongly climate-dependent input into a sedimentary basin. A second type of interaction between the solar system and processes on Earth is caused by the Earth-Moon tidal friction (transfer of energy and angular momentum of Earth's rotation to Moon's orbital motion), which is slowing down Earth's rotation as well as causing the recession of the Moon from the Earth. These interactions are recorded in the sedimentary record by rhythmically layered tidalites in delta settings, where they represent semi-diurnal or diurnal tidal cycles. Very astonishingly (and fortuitous for us), some of these cyclic and rhythmic sedimentary features are still preserved in Paleo- to Neoprotoerozoic sedimentary rocks and can be counted in order to determine the length of days, months and years in the deep geological past (Williams, 2000). This project plans to make a novel contribution to the knowledge of the orbital parameters of our solar system in the Proterozoic by direct dating of volcanic ash beds occurring as layers in rhythmic and cyclic sedimentary rocks, by applying high-precision U-Pb dating techniques using the mineral zircon. Combining these highly precise U-Pb dates and sophisticated Bayesian depositional rate models with orbital tuning (recognition of orbitally forced sedimentary cycles) in chemical and clastic depositional environments, we will determine the length of sedimentary cycles, assign them to orbital parameters (eccentricity, obliquity, precession) and directly determine their durations. We have identified undisturbed and spectacularly well-preserved Proterozoic sedimentary sequences in Western Australia (Hamersley basin), in the Northwestern Territories in Canada (Slave province), and in Eastern Brazil (Diamantina basin). Our precise age determinations on zircon in interbedded ash layers will be used to establish age models based on Bayesian probabilistic statistics (Parnell et al., 2008) and calculate durations of presumed orbital cycles. The data will finally be integrated in numerical models of orbital mechanics of early solar system.In conclusion, the project will potentially create the following new knowledge:•Establish quantitative age models through high-precision U-Pb and probabilistic age modelling for Paleo- and Mesoproterozoic sedimentary sequences on three continents and demonstrate that they are orbitally forced.•Calculate the durations of these cycles and compare them to modern astronomical solutions (Laskar et al. 2011).•Calculate orbital parameters for the solar system 2.5, 1.9 and 1.4 Ga ago. The results will possibly give independent information on the orbital mechanics of the solar system in deep time.
-