Project

Back to overview

HILLSCAPE (HILLSlope Chronosequence And Process Evolution) - Identifying dominant controls on hillslope functioning and feedback processes by interdisciplinary experiments along chronosequences

English title HILLSCAPE (HILLSlope Chronosequence And Process Evolution) - Identifying dominant controls on hillslope functioning and feedback processes by interdisciplinary experiments along chronosequences
Applicant van Meerveld Ilja
Number 167563
Funding scheme Project funding (Div. I-III)
Research institution Hydrology and Climate Unit Department of Geography University of Zurich
Institution of higher education University of Zurich - ZH
Main discipline Pedology
Start/End 01.09.2017 - 31.08.2020
Approved amount 438'767.00
Show all

Keywords (8)

Hillslope; co-evolution; landscape evolution; geomorphology; soil; hydrology; vegetation; chronosequence

Lay Summary (German)

Lead
Anthropogene Aktivitäten und der Klimawandel verändern die Oberfläche der Erde stetig. Das Verständnis für diese Veränderungen und deren Wechselwirkungen mit ökologischen, hydrologischen und geomorphologischen Prozessen ist bisher jedoch limitiert. Einige der Bodeneigenschaften sind persistent, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Das interdisziplinäre Forschungsprojekt "HILLSlope Chronosequence And Process Evolution" (HILLSCAPE) untersucht deshalb die Wechselwirkungen zwischen hydrologischen Abflussprozessen, der Entwicklung von Böden, Vegetation und Landschaft im Bereich von Hanglagen. Die zentrale Frage ist dabei wie sich die unterschiedlichen Wechselwirkungen in Hanglagen in einem Zeitraum von 10‘000 Jahren entwickeln und welche strukturellen Veränderung daraus resultieren.
Lay summary

Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozessen ist rudimentär. Diese Veränderungen sind in Hanglagen besonders markant, wo laterale und vertikale Wasserflüsse über unterschiedliche Zeitskalen miteinander interagieren. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) beschäftigt sich mit der Frage, wie sich dieser Feedback-Zyklus (Topographie – Wasser – Boden – Vegetation) in einem Zeitraum von 10'000 Jahren verändert. Die Ziele des Projektes sind: i) Erfassung der Veränderungen der Hangstruktur und Wasserspeicherung über die letzten 10 ky; ii) Quantifizierung des Einflusses der Vegetation auf die Funktionsweise der Fliesswege; iii) Bestimmung der Wasserwege und deren Bezug zur Bodenbildung und Erosion.

Um dieses ehrgeizige Ziel erreichen zu können, wird ein Chronosequenz-Ansatz auf Moränenstandorten verfolgt. Gletschervorfelder liefern Schnappschüsse der zeitlichen Entwicklung eines Geo-Ökosystems. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. Die Veränderung der Vegetation, Bodeneigenschaften und Oberflächenerosion werden empirisch erfasst. Zusätzlich werden durch künstliche Beregnung die Wasserfliesswege in kontrollierten Experimenten genau untersucht. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen unterteilt und instrumentiert. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.

Direct link to Lay Summary Last update: 30.06.2017

Responsible applicant and co-applicants

Employees

Abstract

Human activities and climate change are rapidly changing the earth's surface. However, our understanding of how soils change over time and how this influences ecological, hydrological and geomorphological processes is still elementary. Some soil properties are persistent, but others can change rapidly with significant effects on water quantity and quality. This is particularly true at the hillslope scale, where lateral and vertical transport processes interact over various timescales. Water and vegetation shape the surface and subsurface properties of hillslopes through weathering, soil development, and erosion. These processes, in turn, control water flow paths. The distribution of water also affects the vegetation, while vegetation in turn also affects the flow pathways for water. Although all of these processes affect each other, their numerous interactions have only recently become a research focus. The multidisciplinary HILLSlope Chronosequence And Process Evolution (HILLSCAPE) project focuses on the vertical and lateral redistribution of water and matter along hillslopes and how this redistribution affects and is affected by soil, vegetation and landscape development. The co-evolution of these processes is a novel and challenging research field.The overall research question of the project is: How does the hillslope feedback cycle evolve in the first 10,000 years and how is this related to the evolution of hillslope structure, including plant cover? HILLSCAPE will identify the dominant controls on hillslope functioning and their feedback processes at hillslopes on moraines of different ages and thus stages in their evolution. We will use a chronosequence of highly instrumented plots at two different locations with different parent material and follow an all-measurements-on-all-plots approach to ensure integration of the different datasets and insights. For each age class, we will investigate six plots, covering a gradient of vegetation complexity. We will determine the hillslope structure at each of these plots and study the hydrological and geomorphological processes during frequent and extreme rainfall events by conducting a series of artificial rainfall experiments. We will also quantify the relevant structural and functional traits and characteristics of the co-occurring plants to derive indices of structural and functional diversity. The combination of the four interdisciplinary PhD projects and the integrative modelling work of the post-doc allows us to understand how hillslope structure and functioning and their feedback processes change during hillslope evolution.
-