Project

Back to overview

Architected Materials for Active Interfacial Friction Control

English title Architected Materials for Active Interfacial Friction Control
Applicant Rafsanjani Abbasi Ahmad
Number 164648
Funding scheme Advanced Postdoc.Mobility
Research institution School of Engineering and Applied Sciences Harvard University
Institution of higher education Institution abroad - IACH
Main discipline Mechanical Engineering
Start/End 01.05.2016 - 31.10.2017
Show all

All Disciplines (3)

Discipline
Mechanical Engineering
Other disciplines of Physics
Material Sciences

Keywords (5)

interfacial friction control; architected materials; mechanical metamaterials; kirigami; friction

Lay Summary (French)

Lead
Les forces de friction résistent au mouvement relatif de deux surfaces glissantes et sont omniprésentes dans nos activités quotidiennes telles que marcher, conduire une voiture, écrire sur du papier, jouer du violon, etc… Des analyses montrent que dans les pays industrialisés, environ 5% du PIB est gâché à travers cette friction. Par exemple, un tiers de la consommation de carburant est due aux pertes par friction. Ainsi, le contrôle et la manipulation des forces de friction sont extrêmement importants pour une large gamme d’applications, ce qui peut non seulement permettre d’économiser de l’énergie et des milliards de Francs Suisse, mais aussi préserver notre environnement.
Lay summary

Du point de vue de la science des matériaux, les forces de friction entre deux surfaces glissantes dépendent des interactions interfaciales (électrostatiques, hydrophobes, d’adhésion, etc…) et sont grandement influencées par la morphologie de l’interface. Dans ce projet, je vais utiliser une combinaison d’expériences et de simulations afin de concevoir tout une gamme de surfaces structurées capables de contrôler leurs propriétés de friction. L’idée principale est de transformer l’état passif de la friction en un état actif contrôlable en mettant à profit les principes de « kirigami », l’art Japonais de découpe du papier. L’avantage principal des meta-surfaces de kirigami vient du fait que leur morphologie peut être contrôlée de façon active et réversible en exploitant les instabilités mécaniques élastiques induites, donnant lieu à une nouvelle approche robuste de réglage et de contrôle de la friction. Une gigantesque variété de motifs kirigami existe, ce qui nous permet de concevoir diverses surfaces de friction ayant les propriétés et les fonctionnalités désirées. Les surfaces structurées contrôlables nous permettraient de faire varier quasi-instantanément les propriétés de friction aux conditions d’utilisation. Par conséquent, elles offrent une large gamme d’applications potentielles au sein des objets intelligents et des automatismes mécaniques. 

 

 

Direct link to Lay Summary Last update: 05.05.2016

Lay Summary (English)

Lead
Friction forces resist the relative motion between two sliding surfaces and are present everywhere in our daily activities such as walking, driving a car, writing on paper, playing a cello and so on. Estimates show that in industrialized countries about 5% of the gross domestic product (GDP) is lost through friction. For instance, one-third of car fuel consumption is due to friction loss. Thus, control and manipulation of frictional forces is extremely important for a variety of applications, which can save energy and billions of Swiss francs and preserve our environment.
Lay summary

From a material science perspective, the frictional forces between two sliding surfaces depend on the interfacial interactions (e.g. electrostatic, hydrophobic, adhesion, etc.) and are strongly affected by morphology of the interface. In this project, I will utilize a combination of experiments and simulations to design a class of structural surfaces that are able to control frictional properties. The core idea is to transform the passive state of friction to an active controllable state by harnessing kirigami principles, the Japanese art of cutting paper. The main advantage of kirigami meta-surfaces is that their morphology can be reversibly and actively controlled by exploiting mechanical induced elastic instabilities, providing a novel and robust approach to tune and control friction. An enormous variety of kirigami patterns exist, which enables us to design various frictional surfaces with desired properties and functionalities. Controllable structural surfaces would allow us to drastically switch frictional properties at actual operating conditions. Therefore, they have a wide range of potential applications in smart devices and mechanical automation.

Direct link to Lay Summary Last update: 05.05.2016

Responsible applicant and co-applicants

Publications

Publication
Propagation of pop ups in kirigami shells
Rafsanjani Ahmad, Jin Lishuai, Deng Bolei, Bertoldi Katia (2019), Propagation of pop ups in kirigami shells, in Proceedings of the National Academy of Sciences, 201817763-201817763.
Kirigami skins make a simple soft actuator crawl
Rafsanjani Ahmad, Zhang Yuerou, Bangyuan Liu, Rubinstein Shmuel, Bertoldi Katia (2018), Kirigami skins make a simple soft actuator crawl, in Science Robotics, 3(15), eaar7555.
Durable bistable auxetics made of rigid solids
Shang Xiao, Liu Lu, Rafsanjani Ahmad, Pasini Damiano (2018), Durable bistable auxetics made of rigid solids, in Journal of Materials Research, 33(3), 300-308.
Buckling-Induced Kirigami
Rafsanjani Ahmad, Bertoldi Katia (2017), Buckling-Induced Kirigami, in Physical Review Letters, 118(8), 084301.
Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs
Rafsanjani Ahmad, Pasini Damiano (2016), Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs, in Extreme Mechanics Letters, 9, 291-296.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
ASME 2017 International Mechanical Engineering Congress and Exposition Talk given at a conference Transition Waves in 2D Bistable Auxetic Structures 06.11.2017 Tampa, United States of America Rafsanjani Abbasi Ahmad;
ASME 2017 International Mechanical Engineering Congress and Exposition Talk given at a conference Locomotion of a kirigami-skinned soft crawler 06.11.2017 Tampa, FL, United States of America Rafsanjani Abbasi Ahmad;
SES 2017, The Society of Engineering Science Technical Meeting Talk given at a conference Transition Waves in 2D Bistable Auxetic Structures 25.07.2017 Boston, United States of America Rafsanjani Abbasi Ahmad;
APS March Meeting Talk given at a conference Buckling-Induced Kirigami 13.03.2017 New Orleans, LA, United States of America Rafsanjani Abbasi Ahmad;
Gordon Research Conference in Complex Active and Adaptive Material Systems Poster Buckling-induced kirigami 29.01.2017 Ventura, CA, United States of America Rafsanjani Abbasi Ahmad;
ASME 2016 International Mechanical Engineering Congress and Exposition Talk given at a conference Harnessing elastic instabilities to design a flat-foldable kirigami mechanical metamaterial 11.11.2016 Phoenix, AZ, United States of America Rafsanjani Abbasi Ahmad;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Artificial snakeskin helps robots get their slither on IEEE Spectrum International 2018
Media relations: print media, online media For this robot, the secret to crawling is artificial snakeskin The Verge International 2018
Media relations: print media, online media Kirigami art and geometric manipulation transform rigid solids to flexible auxetic materials MRS Bulletin International 2018
Media relations: print media, online media Making skins crawl Science Robotics (on the cover) International 2018
Media relations: print media, online media Mechanical metamaterials bend the rules of everyday physics Proceedings of the National Academy of Sciences of the United States of America International 2018
Media relations: print media, online media Snake-inspired robot uses kirigami to move Harvard SEAS News International 2018
Media relations: print media, online media Snakelike skin gives a robot the power to crawl Wired International 2018
Media relations: radio, television The robot based on a snake and other news BBC International 2018
Media relations: print media, online media Break down new materials inspired by kirigami NSF Science Now International 2017
Media relations: print media, online media Buckling-Induced Kirigami Physical Review Letters (on the cover) International 2017
Media relations: print media, online media Embracing Failure PhysicsWorld Magazine International 2017
Media relations: print media, online media Kirigami inspires engineers SNSF Horizons International 2017
Media relations: print media, online media Kirigami strategy leads to pop-up 3D structures with tunable mechanical properties MRS Bulletin International 2017
Media relations: print media, online media New pop-up strategy inspired by cuts, not folds Harvard SEAS News International 2017
Media relations: print media, online media The Power of Kirigami InsideScience International 2017
Media relations: print media, online media A Medley of Metamaterials APS News International 2016
Media relations: print media, online media Islamic art inspires stretchy, switchable materials BBC International 2016
Media relations: print media, online media LEGO bricks, bony foams and Islamic art aid metamaterial advances PhysicsWorld Blog International 2016
Media relations: print media, online media Material that can grow when stretched is inspired by Islamic art NewScientist International 2016
Media relations: radio, television Thousand year old Islamic brickwork inspires modern "metamaterials" BBC International 2016

Patents

Title Date Number Inventor Owner
Bistable Auxetics 02.06.2017 US20170362414

Associated projects

Number Title Start Funding scheme
174326 Programmable Hybrid Architected Materials 01.03.2018 Return CH Advanced Postdoc.Mobility

Abstract

Friction forces resist the relative motion between two sliding surfaces and are present everywhere in our daily activities such as walking, driving a car, writing on paper, playing a cello and so on. Estimates show that in industrialized countries about 5% of the gross domestic product (GDP) is lost through friction. For instance, one-third of car fuel consumption is due to friction loss. Thus, control and manipulation of frictional forces is extremely important for a variety of applications, which can save energy and billions of Swiss francs. From a material science perspective, the frictional forces between two sliding surfaces depend on the interactions at the interface (e.g. electrostatic, hydrophobic, adhesion, etc.) and are strongly affected by its morphology. In this project, I will utilize a combination of experiments and simulations to design a class of structural surfaces that are able to control frictional properties. The core idea is to transform the passive state of friction to an active controllable state by harnessing kirigami principles, the Japanese art of cutting paper. The main advantage of kirigami meta-surfaces is that their morphology can be reversibly and actively controlled by exploiting mechanical induced elastic instabilities, providing a novel and robust approach to tune and control friction. An enormous variety of kirigami patterns exist, which enables us to design various frictional surfaces with, desired properties and functionalities.
-