Project

Back to overview

Microbes and biogeochemical processes associated to methane oxidation at deep sea brines and highly active cold seep systems

Applicant Niemann Helge
Number 159878
Funding scheme Project funding (Div. I-III)
Research institution Institut für Umweltgeowissenschaften Universität Basel
Institution of higher education University of Basel - BS
Main discipline Other disciplines of Environmental Sciences
Start/End 01.04.2015 - 31.03.2016
Approved amount 69'046.00
Show all

All Disciplines (5)

Discipline
Other disciplines of Environmental Sciences
Geology
Organic Chemistry
Other disciplines of Earth Sciences
Oceanography

Keywords (11)

cold seep; molecular biology; microbiology; brine; next generation sequencing; global change; organic geochemistry; marine; biomarker; biogeochemistry; aerobic oxidation of methane (MOx)

Lay Summary (German)

Lead
Mikrobielles Leben in Methan-dominierten marinen Ökosystemen
Lay summary

In tiefen Sedimentschichten der Kontinentalränder sind grosse Mengen des gefährlichen Treibhausgases Methan gespeichert. Dieses Gas kann entlang von geologischen Schwächezonen in Oberflächensedimente bzw. in die Wassersäule und letztendlich in die Atmosphäre transportiert werden, wo es weiter den globalen Klimawandel antreibt. Jedoch wird ein Grossteil des Methans von unterschiedlichen Mikroorganismen in Sedimenten und der Wassersäule “gefressen”, so dass der Ozean eine vergleichsweise geringe Menge an Methan in die Atmosphäre entlässt. Diese Mikroorganismen wirken also wie ein Filter, der Methan zurückhält. Dies könnte sich jedoch in Zukunft ändern: Bedingt durch den globalen Klimawandel wird die Temperatur der Ozeane steigen, was wiederum zu einem verstärkten Methantransport in oberflächennahe Sedimente führen wird. Um abschätzen zu können, wie wichtig die Ozeane in Zukunft als Methanquelle werden könnten, muss allerdings der mikrobielle Methanfilter genauer untersucht werden. Zur Zeit wissen wir sehr wenig über die Effizienz dieses Filters und welche Umweltbedingungen zu einer Selektion bestimmter Mikroorganismen führt, die direkt oder indirekt am Methanabbau beteiligt sind. Im Rahmen des Projektes “Microbes and biogeochemical processes associated to methane oxidation at deep sea brines and highly active cold seep systems” soll genau diese Wissenslücke geschlossen werden. In den letzten Jahren haben wir in verschiedene Ozeanen mehrere Typen von Methan-reichen Ökosystemen beprobt (hochaktive “Cold Seeps” und methanreiche Salzlakenbecken in der Tiefsee) und werden nun die Aktivität, Identität und Häufigkeit der mikrobiellen Gemeinschaften mit Hilfe von biogeochemischen und genetischen Methoden untersuchen. Ziel des Projektes ist es herauszufinden, welche Umweltbedingungen bestimmte methanoxidierende und andere wichtige Mikroorganismen begünstigen und wie sich Umweltfaktoren auf die Effektivität des mikrobiellen Methanfilters auswirken.    

 

Direct link to Lay Summary Last update: 18.12.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard
Graves Carolyn A., Steinle Lea, Rehder Gregor, Niemann Helge, Connelly Douglas P., Lowry David, Fisher Rebecca E., Stott Andrew W., Sahling Heiko, James Rachael H. (2015), Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard, in Journal of Geophysical Research: Oceans, 120(9), 6185-6201.
Geological settings and seafloor morphodynamic evolution linked to methane seepage
Van Landeghem Katrien J. J., Niemann Helge, Steinle Lea I., O’Reilly Shane S., Huws Dei G., Croker Peter F. (2015), Geological settings and seafloor morphodynamic evolution linked to methane seepage, in Geo-Marine Letters, 35(4), 289-304.
Toxic effects of lab-grade butyl rubber stoppers on aerobic methane oxidationToxic effects of aerobic methane oxidation
Niemann Helge, Steinle Lea, Blees Jan, Bussmann Ingeborg, Treude Tina, Krause Stefan, Elvert Marcus, Lehmann Moritz F. (2015), Toxic effects of lab-grade butyl rubber stoppers on aerobic methane oxidationToxic effects of aerobic methane oxidation, in Limnology and Oceanography: Methods, 13(1), 40-52.
Water column methanotrophy controlled by a rapid oceanographic switch
Steinle Lea, Graves Carolyn A., Treude Tina, Ferré Bénédicte, Biastoch Arne, Bussmann Ingeborg, Berndt Christian, Krastel Sebastian, James Rachael H., Behrens Erik, Böning Claus W., Greinert Jens, Sapart Célia-Julia, Scheinert Markus, Sommer Stefan, Lehmann Moritz F., Niemann Helge (2015), Water column methanotrophy controlled by a rapid oceanographic switch, in Nature Geoscience, 8(5), 378-382.

Collaboration

Group / person Country
Types of collaboration
Marine Organic Biogeochemistry Department / Royal Dutch Institute for sea Research - NIOZ Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Habitat Group / Max Planck Institute for Marine Microbiology Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Geomicrobiology Group, Geomar Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EGU General Assembly 2016 Poster Environmental control on aerobic methane oxidation in coastal waters 17.04.2016 Wien, Austria Niemann Helge;
EGU General Assembly 2016 Talk given at a conference Controls on aerobic methane oxidation in the ocean water column 17.04.2016 Wien, Austria Niemann Helge;
AGU Fall Meeting 2015 Poster Environmental controls on aerobic methane oxidation in coastal waters 14.12.2015 San Franzisco, United States of America Steinle Lea;
Swiss Geoscience Meeting 2015 Talk given at a conference Environmental controls on aerobic methane oxidation in coastal waters (SW-Baltic Sea) 20.11.2015 Basel, Switzerland Steinle Lea; Niemann Helge;
EGU General Assembly 2015 Talk given at a conference Water column methanotrophy controlled by a rapid oceanographic switch 12.04.2015 Vienna, Austria Steinle Lea; Niemann Helge;


Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Currents Trigger Methane Release from the Arctic reporting climate science International 2015
Media relations: print media, online media Methane: Promise and Peril of the Arctic Scandinavien Review International 2015
New media (web, blogs, podcasts, news feeds etc.) Strong currents promote release of Arctic greenhouse gas Science Daily International 2015

Associated projects

Number Title Start Funding scheme
138057 Microbial methane consumption in contrasting ocean environments: effects of elevated seepage and geochemical boundary conditions 01.04.2012 Project funding (Div. I-III)
137636 Microbes and oxidants involved in methane oxidation in South Alpine Lake Lugano 01.12.2011 Project funding (Div. I-III)

Abstract

With this proposal, I seek funding for a 1-year extension of the PhD project “Microbial methane consumption in contrasting ocean environments: effects of elevated seepage and geochemical boundary conditions” (SNF DACH Project 200021L_138057. Apr. 2012 - Mar. 2015). The initial aims of of the project were to investigate (i) the marine CH4 filter in view of elevated CH4 fluxes in the future and (ii) to asses the scope for water column CH4 oxidation with respect to magnitude, identity of key organisms and controlling environmental factors. As model systems, we chose several seep systems (natural and man made) in order to cover a range of environmental factor (e.g. seep activity, water depth, age of the seep system) and biogeochemical boundary conditions (eg. redox and salinity gradients and water column hypoxia/anoxia). Methane oxidation was measured with the aid of radio-tracer based ex situ incubations and the identity and abundance of microbial communities was estimated with fluorescence in situ hybridisation (FISH) and lipid biomarker assays. Microbial activity/abundance date were then compared to the spatiotemporal distribution of physicochemical parameters (eg. methane concentration, temperature, salinity and advection patterns). During the first two years of the project, we were able to collect a comprehensive data set, which allowed us to identify several environmental factors controlling water column aerobic methane oxidation (MOx) in marine systems. Our investigations at the cold seeps at the West Spitsbergen Continental Margin showed that currents are a very importing factor controlling the abundance of methanotrophs and thus the capacity for water column MOx. Furthermore, at the ‘Blowout’, a man made cold seep in the North Sea, we found that water column stratification leads to trapping of the uprising methane at the pycnocline where the higher substrate availability supports elevated rates of MOx. Similarly, we could show that seasonal hypoxia/anoxia in the Eckernförde Bay (E-Bay) resulted in elevated bottom water methane concentrations but that MOx under hypoxic conditions at the redoxcline efficiently consumed the uprising methane. Finally, the anoxic, sulfide-rich brine in the deep sea basin ‘Kryos‘ contains high concentrations of methane and sulfate, which makes the anaerobic oxidation of methane thermodynamically feasible. While sulfate reduction was elevated, we could not detect any anaerobic mode of methane oxidation in the brine. Instead, MOx was elevated at the brine sea water interface at sub-micromolar oxygen concentrations. Here, I propose additional analyses of samples that were collected during the first two years of the project to complement the already exiting data sets. (i) At the Svalbard Seeps, we collected several thousand year old methane derived authigenic carbonates. The occurrence of sub-fossilised membrane lipids of anaerobic and aerobic methanotrophs stored in the carbonate matrix can be used to reconstruct seepage in the past, which provides further insight into the temporal dynamics of gas hydrate dissociation at this system. (ii) At the Blowout, methane oxidation rates in the crater were orders of magnitude higher in comparison to the overlying water column, possibly because the vigorous gas ebullition from the sea floor leads to the resuspension of sediments and sediment-associated MOx communities. To further test this hypothesis, I propose to compare the sediment and water column associated MOx community by using FISH and genetic techniques (i.e. next generation sequencing: Roche-454 or Illumina). (iii) For the time series measurements from the E-Bay, we found temporal mismatches between the build up of methane and MOx activity, which could be related to a lag time of MOx community development. In order to evaluate this, I propose to measure the MOx community size by using FISH. Finally, in the Kryos brine-seawater interface, we found unusual and 13C-enriched fatty acid, which may possibly originate from e-Proteobacteria mediating sulfide oxidation. As we could not collect samples for FISH at Kryos, I suggest to conduct NGS to gain insights into the identity and abundance of key microbes at this biogeochemical hot spot.
-