Project

Back to overview

Reduction & reuse of CO2: renewable fuels for efficient electricity production

English title Reduction & reuse of CO2: renewable fuels for efficient electricity production
Applicant Hocker Thomas
Number 154051
Funding scheme NRP 70 Energy Turnaround
Research institution Zürcher Hochschule für Angewandte Wissenschaften ZHAW
Institution of higher education Zurich University of Applied Sciences - ZHAW
Main discipline Material Sciences
Start/End 01.10.2014 - 31.01.2018
Approved amount 131'082.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Technical Physics

Keywords (10)

efficiency technologies; CO2 reduction; hydrogen production; fuel cells; renewable fuels; power to gas; methanation; SOFC; PEM; PEC

Lay Summary (German)

Lead
Die Kernaspekte der „Energiestrategie 2050“ sind die Reduktion von klimaschädlichem CO2, der Ersatz von fossilen Brennstoffen wie Erdöl und Erdgas durch erneuerbare Energieträger sowie die Effizienzsteigerung von Technologien, Prozessen und Gebäuden. Damit kommt auf das Schweizer Energiesystem eine besondere Herausforderung zu. Es bedarf daher neuer, tragfähiger Strategien und Konzepte, die einen substanziellen Beitrag leisten können und mit einer hohen Relevanz für den Energiesektor aufwarten. Ziel des interdisziplinären Projektkonsortiums ist eine substanzielle Reduktion der CO2-Emissionen im Rahmen der Umstellung auf ein neues Energiesystem in der Schweiz. Als Initiator des Projektes erfährt die ZHAW zusammen mit weiteren F&E Partnern (EMPA, EPFL, PSI) eine breite Unterstützung durch den Verband der Schweizerischen Gasindustrie (SVGW) und der „Schweizerischen Cementindustrie“ (cemsuisse) sowie von führenden Industrieunternehmen für stationäre und mobile Brennstoffzellen.
Lay summary

Das Verbundprojekt mit dem Titel „Reduction & Reuse of CO2: renewable fuels for efficient electricity production“ fokussiert sich auf die Anwendung von Hocheffizienztechnologien für die Substitution von fossilem Öl und Erdgas durch erneuerbare Energieträger wie Wasserstoff (H2) und synthetischem Erdgas (SNG) sowie deren anschliessende Nutzung zur Stromerzeugung im Mobilitäts- und Gebäudesektor.

In diesem interdisziplinären „Power-to-Gas“ und „Gas-to-Power“ Ansatz finden Technologien wie die photoelektrochemische Wasserspaltung (PEC), katalytische CO2-Methanisierung, SOFC- und PEM-Brennstoffzellen Anwendung, allesamt Technologien, die eine substanzielle Reduktion von CO2-Emissionen ermöglichen.

Erneuerbarer H2 benötigt derzeit aber eine Umwandlung zu Methan (CH4), um einerseits speicherbar und transportierbar zu sein, vor allem aber, um in allen Technologien beim Endkunden eingesetzt werden zu können.

Um ein möglichst grosses Potenzial auszuschöpfen ist es das Ziel zementäres CO2, welches aus der Verarbeitung des Rohmaterials Kalkstein resultiert, mit H2 zu synthetischem CH4 umzuwandeln. Ausgehend von einer vollständigen Nutzung aller CO2 Emissionen aus der Zementproduktion in der Schweiz, könnten damit jährlich 2 Millionen Tonnen CO2  zur Herstellung von synthetischem Erdgas genutzt werden. Das entspricht über 6 % der Schweizer CO2 Emissionen. Gleichzeitig müssten weniger fossile Brennstoffe importiert werden.

Die einzelnen Technologien bilden damit eine Wertschöpfungskette vom Erzeuger bis zum Verbraucher und ermöglichen in dieser Konstellation eine gesamthafte Beurteilung entlang des Energieträgers. Damit können die Energieträger einer umfassenden Nachhaltigkeitsbeurteilung unterzogen werden, um sowohl energetische als auch (sozio-)ökonomische Aussagen treffen zu können.

Direct link to Lay Summary Last update: 19.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland
Baier Jens, Schneider Gabriel, Heel Andre (2018), A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland, in Frontiers in Energy Research, 6, online.

Collaboration

Group / person Country
Types of collaboration
Ye Zhang - Energy Research Centre Netherlands (ECN) Netherlands (Europe)
- in-depth/constructive exchanges on approaches, methods or results
CEMSUISSE Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
APEX Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Prof. Ballif - NRP70: PV2050 Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
SVGW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Industry/business/other use-inspired collaboration
HSR - Institut für Energietechnik Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Industry/business/other use-inspired collaboration
ERIG - European Research Institute for Gas and Energy Innovation Belgium (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Practical Renewable Energy Storage Individual talk Chemical Fuels beyond Hydrogen: Materials & Processes 31.10.2017 Dübendorf, Switzerland Heel Andre;
Lecture at ZHAW: Exhaus Gas Treatment Individual talk Exhaust Gas Treatment: Renewable CH4 from CO2 Emissions: Principles and Systems 15.02.2016 ZHAW Winterthur, Switzerland Heel Andre;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
SWISSMEM Technology Meeting Talk 08.03.2018 Zürich, Switzerland Heel Andre;
Practical Renewable Energy Storage Talk 31.10.2017 Dübendorf EMPA, Switzerland Heel Andre;


Self-organised

Title Date Place
Technology Transfer Activity with Cemsuisse 13.12.2017 Bern, Switzerland
Technology transfer to cement industry Holcim 10.10.2017 siggenthal-Würenlingen, Switzerland
NRP70 - Reduction & reuse of CO2: renewable fuels for efficient electricity production 06.06.2017 Murten, Switzerland

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Puzzleteile eines neuen Energiesystems (NRP70) ZHAW Impact German-speaking Switzerland International 2018
Talks/events/exhibitions Swissmem Technology Meeting March 2018 German-speaking Switzerland International 2018
Media relations: print media, online media Erneuerbare Energieträger zur Stromerzeugung "Energie &" International 2017
Media relations: print media, online media 'Informationen zu Energieforschungs-, Pilot-, Demonstrations- und Leuchtturmprojekten' Magazin: Erneuerbare Energien International Western Switzerland German-speaking Switzerland 2017
Media relations: print media, online media Das NFP 70 Verbundprojekt "Reduction & Reuse of CO2" Aqua & Gas German-speaking Switzerland 2016
Media relations: print media, online media Renewable fuels for sustainable electricity production International Innovation International 2015

Abstract

Reduction of CO2 emissions, replacement of fossil fuels and efficiency increase are the key aspects for the future Swiss energy research according to the “Energy Strategy 2050”. In order to meet these requirements high impact strategies with a particular momentum to save fossil fuels and to reduce CO2 emissions are needed.This joint project entitled “Reduction & reuse of CO2: renewable fuels for efficient electricity production” comprises all three aspects along an “energy value chain” from the supply side (renewable gas production) to the demand side (gas conversion into electricity). Moreover, we suggest a strategy for which a substantial reduction of CO2 emissions can be reached, because large amounts of highly concentrated CO2 are available, for example at cement production plants. This is a prerequisite for ecologic effective but economic profitable processes. We therefore propose a value chain comprising the following five research topics and technologies: I) Hydrogen production from solar energy by photoelectrochemical (PEC) water splitting with respect to storage and/or transportation purposesII) An unique low temperature and therefore highly efficient catalytic methanation (CH4) of CO2 from cement industry with renewable hydrogen (e.g. from PEC)III) Electricity supply from renewable energy carriers (H2) by conversion with highly efficient technologies (fuel cells of type PEFC) for mobile applicationsIV) Electricity & heat supply from renewable energy carrier (CH4) by conversion with highly efficient fuel cell technology of type SOFC for stationary applicationsV) Sustainability and technology assessment of the proposed energy technologies in their combination and interaction.While sequestration and storage of CO2 does not reduce emissions and is an economical and energetic expenditure, it seems very attractive to upgrade CO2 to CH4 by renewable H2 and thereby replace fossil CH4. A huge momentum for reduction of CO2 emissions and replacement of fossil fuels is given, if locally available CO2-rich sources are converted into transportable methane under the use of renewable H2. We thus propose to establish procedures that could capture the 2.0 Mt CO2/a from Swiss cement industry and convert it into a renewable fuel (CH4). These amounts correspond to nearly 10% of the overall Swiss CO2 emissions. Here, we would like to highlight the fact, that the envisaged scientific methanation project applies a rather new and innovative sorption enhanced catalyst concept.In parallel, reliable H2 storage technologies are pushing on the market, offering H2 as attractive future energy carrier for proton exchange membrane fuel cells (PEFC) for the mobility sector. Such PEFCs operate on pure hydrogen and produce zero emissions. Electric vehicles containing PEFC have the potential to replace conventional combustion based vehicles. Thereby, fuel cell technology can contribute substantially to the reduction of the CO2 emissions in the mobility sector.Beside the integration of renewable fuels, further substantial CO2 reduction and sustainable benefits can be reached by replacing conventional combustion technologies with substantially more efficient fuel cell technologies. Fuel cells facilitate the conversion of chemical energy from both, H2 and CH4 as well as from renewable and fossil fuels into electricity. And they do this conversion in a very efficient and environmentally benign way. Their integration into stationary, decentralized combined heat and power systems (CHP) contributes with a significant increase in efficiency and a further reduction of fuel consumption within the sustainable energy supply chain.As addressed by the above mentioned technologies carbon-free or carbon-neutral alternatives to fossil fuels must be established. The photoelectrochemical water splitting technology provides access to a sustainable generation of hydrogen fuel by harnessing the largest and most promising renewable resource, the solar energy. Our aim is to advance the technology of photoelectrochemical water splitting to the point where it is attractive for industrialization.An advantage of this particular “value chain” is the possibility to multiply its environmental and efficiency impact by combining different technologies. It is also possible to integrate additional technologies, e.g. „Combined Cycle Gas Turbines” can be integrated as a further CO2-rich source, similar to the cement plants. Methanation of such CO2 sources contributes to CO2 reduction and at the same time to the reduction of primary (fossil) energy carriers. It is the declared aim of the joint project to distribute the achieved scientific-technical and sustainability results and involve further industrial partners in order to transfer the gained knowledge from research institutes to a practical application. This is considered as key aspect for the realization of the “Energy Strategy 2050”.
-