Project

Back to overview

Smart materials concept for SOFC anodes: Self-regenerating catalysts for efficient energy production from renewable fuels

English title Smart materials concept for SOFC anodes: Self-regenerating catalysts for efficient energy production from renewable fuels
Applicant Heel Andre
Number 154047
Funding scheme NRP 70 Energy Turnaround
Research institution Laboratory for Ceramic Materials Institute for Materials and Process Engineer ZHAW
Institution of higher education Zurich University of Applied Sciences - ZHAW
Main discipline Material Sciences
Start/End 01.10.2014 - 31.01.2018
Approved amount 341'040.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Technical Physics

Keywords (7)

biofuels; virtual materials design; self-regeneration; modelling; smart materials; sulphur; fuel cells anode

Lay Summary (German)

Lead
Im Kontext der Diskussion um fossiles Öl oder Erdgas und den von ihnen ausgehenden CO2 Emissionen, gewinnen erneuerbare Energieträger wie Biomethan oder Biogas zunehmend an Bedeutung. Für den verantwortungsvollen und effizienten Einsatz von biogenen Ressourcen werden Brennstoffzellen zukünftig einen wichtigen Beitrag leisten. Im Gegensatz zu konventionellen Heizkesseln oder Ölheizungen nutzen Brennstoffzellen das Prinzip der elektrochemischen Umwandlung, stellen gleichzeitig Strom und Wärme bereit und erreichen damit einen ausserordentlich hohen Wirkungsgrad von über 90%.Allerdings führen Schwefelverbindungen wie H2S aus biogenen Rohstoffen, aber auch Substanzen wie Mercaptane oder Tetrahydrothiophen - sie werden dem Erdgas aus Sicherheitsgründen als Geruchsstoff zugemischt -, zu starken Vergiftungen der Katalysatoren in der Brennstoffzelle. Lebensdauer, Leistung und Effizienz werden stark gemindert und daher müssen Schwefelverbindungen zurzeit noch kostenintensiv entfernt werden.
Lay summary

Im Fokus des Projektes stehen Untersuchungen zur Entwicklung eines neuartigen Materialkonzepts, welches eine selbstregenerierende Funktion hinsichtlich Katalyse und Mikrostruktur aufweist und die direkte Verwendung von schwefelbelastetem Biogas erlauben soll. Durch eine geschickte Prozessführung kann sich der Katalysator von den vergiftenden Schwefelkontaminationen selbst befreien und erneuern. Während Lebensdauer, Leistung und Effizienz der Brennstoffzelle auf hohem Niveau erhalten bleiben, reduzieren sich zudem die Systemkosten, weil eine kostenintensive Entschwefelung entfällt.

Aufgrund der Komplexität wird eine interdisziplinäre Strategie verfolgt, bei der eine Kombination aus Materialforschung, Prozesstechnik, Hochtemperatur-Elektrochemie, Katalyse, aber auch eine quantitative Bildanalyse, 3D-Imaging sowie Multi-Physik- und Mikrostruktur-Simulationen zusammenwirken. Damit werden die Grundlagen für ein Verständnis der Zusammenhänge von Reaktionsmechanismen, Mikrostrukturen und katalytischen Eigenschaften gelegt, die eine erfolgreiche Umsetzung der Erkenntnisse in eine zuverlässige Brennstoffzellentechnologie auf Basis von erneuerbaren Energieträgern ermöglichen.

Diese Entwicklung wirkt sich somit einerseits positiv auf die Brennstoffzellendegradation und auf die Lebensdauer eines SOFC Systems aus. Andererseits können die Systemkosten reduziert werden, so dass die stationäre SOFC breiten Eingang in die Strom- und Wärmeversorgung von Einfamilienhäusern findet. Dies hat eine deutliche Reduktion von CO2-Emissionen und den verantwortungsvollen Umgang mit Energieressourcen zur Folge.

Des Weiteren zeichnet sich das Materialkonzept auch durch ein hohes Transferpotenzial in andere Technologien wie z.B. für Abgaskatalysatoren im Automobilbereich aus.

Direct link to Lay Summary Last update: 19.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Big Data for Microstructure-Property Relationships: A Case Study of Predicting Effective Conductivities
Stenzel Ole, Pecho Omar, Holzer Lorenz, Neumann Matthias, Schmidt Volker (2017), Big Data for Microstructure-Property Relationships: A Case Study of Predicting Effective Conductivities, in AICHE JOURNAL, 63(9), 4224-4232.
Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts
Steiger Patrick, Delmelle Renaud, Foppiano Debora, Holzer Lorenz, Heel Andre, Nachtegaal Maarten, Kröcher Oliver, Ferri Davide (2017), Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts, in ChemSusChem, 10(11), 2505-2517.
Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL
Holzer L., Pecho O., Schumacher J., Marmet P., Stenzel O., Büchi F. N., Lamibrac A., Münch B. (2017), Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL, in Electrochimica Acta, 227, 419-434.
Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability
Holzer L., Pecho O., Schumacher J., Marmet Ph., Büchi F.N., Lamibrac A., Münch B. (2017), Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability, in Electrochimica Acta, 241, 414-432.
Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties: Towards knowledge-based design of ceramic diaphragms for sensor applications
Holzer L., Stenzel O., Pecho O., Ott T., Boiger G., Gorbar M., de Hazan Y., Penner D., Schneider I., Cervera R., Gasser P. (2016), Fundamental relationships between 3D pore topology, electrolyte conduction and flow properties: Towards knowledge-based design of ceramic diaphragms for sensor applications, in Materials & Design, 99, 314-327.
Predicting effective conductivities based on geometric microstructure characteristics
Stenzel Ole, Pecho Omar, Holzer Lorenz, Neumann Matthias, Schmidt Volker (2016), Predicting effective conductivities based on geometric microstructure characteristics, in AIChE Journal, 62(5), 1834-1843.
SMART catalyst based on doped Sr-titanite for advanced SOFC anodes
Burnat Dariusz, Kontic Roman, Holzer Lorenz, Schuler Andreas, Mai Andreas, Heel Andre (2016), SMART catalyst based on doped Sr-titanite for advanced SOFC anodes, 1(1), EFCF Lucerne, Lucerne 1(1).
Smart material concept: reversible microstructural self-regeneration for catalytic applications
Burnat D, Kontic R., Holzer R., Steiger P., Ferri D., Heel A. (2016), Smart material concept: reversible microstructural self-regeneration for catalytic applications, in Journal of Materials Chemistry A, 4(30), 11939-11948.
Stochastic 3D modeling of complex three-phase microstructures in SOFC-electrodes with completely connected phases
Neumann Matthias, Staněk Jakub, Pecho Omar M., Holzer Lorenz, Beneš Viktor, Schmidt Volker (2016), Stochastic 3D modeling of complex three-phase microstructures in SOFC-electrodes with completely connected phases, in Computational Materials Science, 118, 353-364.
Lanthanum doped strontium titanate - ceria anodes: Deconvolution of impedance spectra and relationship with composition and microstructure
Burnat D., Nurk G., Holzer L., Kopecki M., Heel A., Lanthanum doped strontium titanate - ceria anodes: Deconvolution of impedance spectra and relationship with composition and microstructure, in Journal of Power Sources.

Collaboration

Group / person Country
Types of collaboration
University of St Andrews - School of Chemistry Great Britain and Northern Ireland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Prof. Dr. Jan-Dierk Grunwaldt, KIT Karlsruhe Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Hexis AG Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
PSI - Catalysis for Energy Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
ETHZ - ScopeM / EMEZ Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
TU Wien - Institute of Chemical Technologies and Analytics Austria (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
University fo Tartu Estonia (Europe)
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration
EPFL - Industrial Energy Systems Laboratory (LENI) Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
NRP70 Workshop meeting Individual talk Self Self-regenerating catalyst for efficient energz production with renewable fuels 06.06.2017 Murtens, Switzerland Holzer Lorenz; Franken Tanja; Heel Andre; Burnat Dariusz;
13th European SOFC & SOE Forum - 03.06.2018 (upcoming accepted) Talk given at a conference Exsolution and integration of nanosized SMART catalysts for next generation SOFC anodes 03.06.2017 Lucerne, Switzerland Heel Andre; Holzer Lorenz; Franken Tanja; Burnat Dariusz;
13th European SOFC & SOE Forum - 03.06.2018 (upcoming accepted) Poster LST-CGO anodes: deconvolution of impedance spectra and relationship with composition and microstructure 03.06.2017 Lucerne, Switzerland Holzer Lorenz; Heel Andre; Burnat Dariusz;
European Fuel cell Forum 2016 Talk given at a conference SMART catalyst based on doped Sr-titanite for advanced SOFC anodes 05.07.2016 Luzerne, Switzerland Burnat Dariusz;
Modval Symposium for fuel cell and battery Modeling and experimental Validation, Nr. 13 Talk given at a conference Optimization of Ni-YSZ Anode Performance by Virtual Materials Testing 22.03.2016 Lausanne, Switzerland Heel Andre; Holzer Lorenz; Burnat Dariusz; Kontic Roman;


Knowledge transfer events



Self-organised

Title Date Place
Technology Transfer: Self-regeneating anodes into SOFC 18.12.2017 Winterthur, Switzerland
Technology meeting: Catalysts for anodes in SOFC systems 12.10.2016 Brugg, Switzerland
Technology Transfer: Progress in Self-regeneating anodes for SOFCs 13.07.2016 Winterthur, Switzerland

Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Eine Erfolgsgeschichte aus der Materialforschung für ein hocheffizientes Upgrade Aqua & Gas (06/2018) German-speaking Switzerland 2018
Media relations: print media, online media Puzzleteile eines neuen Energiesystems ZHAW Impact German-speaking Switzerland 2018
Media relations: print media, online media Renewable fuels for sustainable electricity production Interantional Innovation International 2016

Associated projects

Number Title Start Funding scheme
159568 Understanding self-regeneration of perovskite-type oxides to prepare active and stable catalysts 01.07.2015 Project funding (Div. I-III)

Abstract

This interdisciplinary activity focuses on the evaluation of multiphase microstructures for a novel smart catalyst concept in the anode compartment of a fuel cell system.The drawback of currently used state-of-the-art nickel cermet catalysts is the general lack of microstructural stability against high temperature, humidity, varying oxygen partial pressures. In addition, sulphur, which is present in fossil but also in renewable fuels as addressed in the joint project, immediately harm the Ni-catalyst and cause an irreversible degradation, if exposed to sulphur for longer times. Microstructural and catalytic degradation becomes obvious by aggregation, particle growth and loss of active surface area and results in an increase of the polarisation resistance and lowers the electrochemical activity. Furthermore, percolation of the catalytic active nickel phase is limited and the electron pathways are interrupted by particle growth, what again affects the ohmic resistance of the fuel cell. To overcome these major degradation effects a new material-based strategy is applied. An anode material with an innovative “smart” effect is applied, where activity and performance will be recovered by the material intrinsic functionality to regenerate itself under an externally triggered stimulus. A commonly harmful redox cycle with transient pO2 operating conditions is actively used to self regenerate the anode catalyst. For this a fundamental understanding of the complex reaction mechanism and the relationships between performance and topological parameters on micro- and nanoscales is needed. Sophisticated microstructure analysis (nanotomography, TEM, image analysis) and numerical modelling and simulation will be combined with detailed electrochemical investigations.
-