Project

Back to overview

Integrated 3D Cooling SiC Power Module Packaging

English title Integrated 3D Cooling SiC Power Module Packaging
Applicant Thome John R.
Number 154024
Funding scheme NRP 70 Energy Turnaround
Research institution Laboratoire de transfert de chaleur et de masse EPFL - STI - IGM - LTCM
Institution of higher education EPF Lausanne - EPFL
Main discipline Mechanical Engineering
Start/End 01.10.2014 - 30.09.2018
Approved amount 389'313.00
Show all

Keywords (5)

flow boiling; microchannel two-phase cooling; thermosyphon cooling; microevaporator; igbt

Lay Summary (Italian)

Lead
Questo progetto mira a sviluppare una tecnologia di raffreddamento ad alte prestazioni per innovativi e compatti agglomerati di transistor. Questo permetterà di realizzare dispositivi ad alta efficienza per la conversione di energia per locomotive ferroviarie e altre applicazioni con dimensioni e costi ridotti.
Lay summary
Transistor di potenza sono largamente utilizzati nell'ambito della conversione di energia, ad esempio per convertire la corrente elettrica a frequenza fissa fornita ad una locomotiva ferroviaria in frequenze diverse richieste per alimentare i motori alle varie velocità del treno. Le prestazioni di questi transistor sono limitate dal calore che essi generano. Le loro prestazioni possono essere migliorate costruendo transistor capaci di funzionare a temperature piu' alte (utilizzando ad esempio chip in carburo di silicio (SiC) invece di semplice silicio) o utilizzando sistemi di raffreddamento a liquido o a flussi bifase, ciascuno dei quali permette un raffreddamento molto migliore rispetto al tradizionale raffreddamento ad aria. Gli scambiatori di calore a fluido bifase funzionano evaporando liquido in prossimità del chip e condensandolo in un'altra zona, il tutto in un circuito chiuso. Aumentando le prestazioni dei transistor, è possibile diminuire il numero di chip necessari, riducendo le dimensioni e il costo del sistema.

I moduli 3D-SiC di transistor che saranno sviluppati con questo progetto includeranno chip multipli tra coppie di elementi di raffreddamento bifase. Il miglior raffreddamento permetterà un impacchettamento piu' denso dei chip e condizioni operative caratterizzate da potenze elettriche per chip piu' alte di quanto altrimenti possibile. Questo studio valuterà le possibilità di far circolare il fluido refrigerante attraverso il modulo sia tramite pompa, per garantire le massime prestazioni, o per convezione naturale, indotta dal moto verticale di bolle di vapore, per minimizzare i costi e la complessità. Lo studio comincerà con un progetto iniziale, che comprende il miglioramento di codici computazionali elaborati su misura, richiesti per il dimensionamento. Quindi, il progetto migliore sarà testato sperimentalmente. Infine, un prototipo di sistema di raffreddamento basato su scambiatori di calore a due lati sarà costruito e testato.
Direct link to Lay Summary Last update: 07.10.2014

Lay Summary (English)

Lead
This project will develop high-performance cooling technology for novel, densely-packed stacks of power transistors. This will allow high efficiency power conversion equipment for railway locomotives and other applications with reduced size and cost.
Lay summary
Power transistors are used extensively in power conversion, for example converting electrical current supplied to a railway locomotive at fixed frequency to the frequencies required to drive the motors at various train speeds.  The capacity of these transistors is limited by the heat they generate. Capacity can be increased by building transistors which tolerate higher temperatures (i.e. on silicon carbide (SiC) chips rather than silicon) or by using liquid or two-phase cooling, which either of which has far higher capacity than air cooling. Two-phase coolers operate by boiling liquid next to the chip and condensing it elsewhere, circulating fluid in a closed loop.  By increasing transistor capacity fewer chips are required, reducing equipment size and cost.

The 3D-SiC modules transistor modules to be developed for this project will include multiple chips between a pair of two-phase cooling elements.  Coolants suitable for this design are environmentally and electrically safe.  Unlike water, they can be placed in direct contact with electronics for maximum cooling effectiveness.  Superior cooling will allow chips to be packed densely and operated at higher electrical loads per chip than otherwise allowable.  The study will evaluate possibilities of circulating coolant through the module either by a pump, for maximum performance, or by natural circulation, driven by rising vapor bubbles, for minimum cost and complexity.  The study will begin with the initial design, including improvements to custom computer codes required for the design.  Secondly, the best candidate designs will be tested experimentally.  Finally, a cooling system prototype using integrated double-sided coolers will be constructed and demonstrated.
Direct link to Lay Summary Last update: 07.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Experimental Evaluation of a Passive Thermosyphon Cooling System for Power Electronics
CataldoFilippo (2018), Experimental Evaluation of a Passive Thermosyphon Cooling System for Power Electronics, World Scientific Publishing Company Pte Limited, USA, 279-319.
Experimental evaluation of a passive thermosyphon cooling system using dfferent low-GWP refrigerants
Cataldo Filippo (2018), Experimental evaluation of a passive thermosyphon cooling system using dfferent low-GWP refrigerants, World Scientific Publishing Company Pte Limited, USA, 329-367.
Experimental performance of a completely passive thermosyphon cooling system rejecting heat by natural convection using the working fluids r1234ze, r1234yf, and r134a
CataldoFilippo (2018), Experimental performance of a completely passive thermosyphon cooling system rejecting heat by natural convection using the working fluids r1234ze, r1234yf, and r134a, in Journal of Electronic Packaging.
Experimental evaluation of the thermal performances of a thermosyphon cooling system rejecting heat by natural and forced convection
CataldoFilippo (2017), Experimental evaluation of the thermal performances of a thermosyphon cooling system rejecting heat by natural and forced convection, in Applied Thermal Engineering, 1404-1415.

Collaboration

Group / person Country
Types of collaboration
FHNW Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Industry/business/other use-inspired collaboration

Abstract

This sub-project proposal is part of the "SwiSS Transformer" - Solid State SiC Transforms umbrella project. The new 3D SiC module proposed here with multiple chips sandwiched in between two-phase cooling elements (using microchannel flow boiling as the cooling process) is an innovative concept that will exploit the full potential of the semiconductor. The strategy to achieve this goal is to bring the coolant in close contact with the semiconductor. This allows a much more compact packaging of the module, i.e. a 3D stacking of the semiconductors. With this strategy, the coolant is introduced inside the package and is in close contact with the semiconductor. With this innovative approach, several thermal interfaces are eliminated between the dielectric cooling fluid (a refrigerant) and the semiconductor. We intend to develop a two-phase cooling solution here (possibly with passive thermosyphon flow circulation without a pump) using the latest low-cost production methods of such cooling structures. This method is very ambitious and has a very high thermal cooling performance potential for now and the future.
-