Project

Back to overview

SwiSS Transformer - P3: 99% Efficient Solid State SiC Transformer Cell Demonstrator

English title SwiSS Transformer - P3: 99% Efficient Solid State SiC Transformer Cell Demonstrator
Applicant Bortis Dominik
Number 154005
Funding scheme NRP 70 Energy Turnaround
Research institution Departement für Hochspannungstechnologie D-ITET ETH Zurich
Institution of higher education ETH Zurich - ETHZ
Main discipline Electrical Engineering
Start/End 01.10.2014 - 30.09.2018
Approved amount 352'894.00
Show all

Keywords (11)

Smart Grid; Silicon Carbide; Energy Processing; Solid State Transformer; DC-DC Converter; Medium Frequency; Medium Voltage; Renewable Energy; High Efficiency; Dual Active Bridge; Multi-Cell

Lay Summary (German)

Lead
Das gegenwärtige Wechselstromnetz basiert weitgehend auf passiven Komponenten wie zum Beispiel Transformatoren welche die Spannungsniveaus der Übertragungs- und Verteilebene anpassen und eine Potentialtrennung verschiedener Netzabschnitte sicherstellen bzw. die Implementierung von Schutzkonzepten ermöglichen. Für eine breite Integration erneuerbarer Energiequellen bzw. eine Reduktion der Abhängigkeit von umweltschädigenden Energieträgern werden allerdings grundlegend neue aktive Komponenten - Solid-State Transformatoren - benötigt, welche nicht nur eine Spannungsanpassung sondern auch eine Spannungsregelung erlauben, und neben Wechselspannung auch Gleichspannung umformen können und so die direkte Anbindung erneuerbarer Quellen oder elektrischer Speicher ermöglichen. In Verbindung mit der Möglichkeit der Kompensation von Stromoberschwingungen und einer aktiven Kurzschlussstromlimitierung kann so zukünftig ein flexibles und intelligentes Stromnetz erreicht werden („Smart Grid“).
Lay summary

SwiSS Transformer – P3: Demonstrator eines Solid-State Transformators mit 99% Wirkungsgrad auf Basis von Siliziumkarbid-Halbleitern (SiC) 

Die Synthese eines derartigen Solid-State Transformators (SST) verlangt eine enge Zusammenarbeit von Experten mit unterschiedlichsten Kernkompetenzen. Im Rahmen des Forschungsprojektes „SwiSS Transformer“ befasst sich ein Team des Power Electronic Systems Laboratory der ETH Zürich gemeinsam mit Fachleuten der Industrie (ABB), des PSI, der EPFL, und der FHNW mit dem Bau eines Prototypen eines derartigen SST. Ziel ist es, auf Basis modernster Komponententechnologien, d.h. insbesondere neuer SiC (Siliziumcarbid) Leistungshalbleiter (ABB und PSI) und neuer Kühlkonzepte (EPFL), sowie Isolations-, Schaltungs-, und Regelkonzepte (ETHZ)  eine gegenüber passiven Systemen wesentlich erweiterte  Funktionalität und eine möglichst hohe Leistungsdichte (Watt pro Liter) und Effizienz (99%) zu erreichen. Die hierbei zu meisternden wissenschaftlichen und technischen Herausforderungen sind wesentlich durch den eingangsseitig direkten Anschluss des SST an das Mittelspannungsnetz und den Betrieb mit Frequenzen, die bis zu einen Faktor 1000 höher sind als im bestehenden Stromnetz, bestimmt. Einen weiteren Hauptaspekt stellt die bestmögliche Einbindung des Systems in bestehende oder neue Netze (FHNW) sowie die Sicherstellung der Zuverlässigkeit des Systems (FHNW) dar, welche schlussendlich gleich hoch sein muss wie jene bewährter passiver Transformatoren.

Der Einsatz dieses neuen, zukunftsweisenden Transformatorkonzeptes wird – in Verbindung mit einer weitgehenden Reduktion oder sogar Elimination traditioneller Energiequellen – den zukünftig erforderlichen grundlegenden Umbau des Stromnetzes massgeblich unterstützen, und einen wesentlichen Beitrag zur Sicherstellung einer umweltfreundlichen, stabilen und qualitativ hochstehenden Stromversorgung für zukünftige Generationen leisten.

 

 
Direct link to Lay Summary Last update: 01.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Accurate Transient Calorimetric Measurement of Soft-Switching Losses of 10kV SiC MOSFETs and Diodes
Rothmund Daniel, Bortis Dominik, Kolar Johann W. (2018), Accurate Transient Calorimetric Measurement of Soft-Switching Losses of 10kV SiC MOSFETs and Diodes, in {IEEE} Transactions on Power Electronics, 1.
10kV SiC-Based Bidirectional Soft-Switching Single-Phase AC/DC Converter Concept for Medium-Voltage Solid-State Transformers
Rothmund Daniel, Bortis Dominik, Huber Jonas, Biadene Davide, Kolar Johann W. (2017), 10kV SiC-Based Bidirectional Soft-Switching Single-Phase AC/DC Converter Concept for Medium-Voltage Solid-State Transformers, in 2017 {IEEE} 8th International Symposium on Power Electronics for Distributed Generation Systems ({PE, Florianopolis, BrazilIEEE, Piscataway, New Jersey, United States.
Comparative Evaluation of Isolated Front End and Isolated Back End Multi-Cell SSTs
Huber Jonas, Rothmund Daniel, Kolar Johann (2016), Comparative Evaluation of Isolated Front End and Isolated Back End Multi-Cell SSTs, in International Power Electronics and Motion Control Conference (IPEMC 2016-ECCE Asia), Hefei, ChinaIEEE, Piscataway, New Jersey, USA.
10kV SiC-Based Isolated DC-DC Converter for Medium Voltage-Connected Solid-State Transformers
Rothmund Daniel, Ortiz Gabriel, Guillod Thomas, Kolar Johann (2015), 10kV SiC-Based Isolated DC-DC Converter for Medium Voltage-Connected Solid-State Transformers, in Applied Power Electronics Conference and Exposition (APEC), Charlotte, North Carolina, USAIEEE, Piscataway, New Jersey, USA.
SiC-Based Unidirectional Solid-State Transformer Concepts for Directly Interfacing 400V DC to Medium-Voltage AC Distribution Systems
Rothmund Daniel, Ortiz Gabriel, Kolar Johann (2014), SiC-Based Unidirectional Solid-State Transformer Concepts for Directly Interfacing 400V DC to Medium-Voltage AC Distribution Systems, in IEEE International Telecommunications Energy Conference (INTELEC), Vancouver, CanadaIEEE, Piscataway, New Jersey, USA.
99% Efficient 10 kV SiC-Based 7 kV/400V DC-Transformer for Future Data Centers
Rothmund Daniel, Guillod Thomas, Bortis Dominik, Kolar Johann W., 99% Efficient 10 kV SiC-Based 7 kV/400V DC-Transformer for Future Data Centers, in IEEE Journal of Emerging and Selected Topics in Power Electronics, 1.
99.1% Efficient 10 kV SiC-Based Medium Voltage ZVS Bidirectional Single- Phase PFC AC/DC Stage
Rothmund Daniel, Guillod Thomas, Bortis Dominik, Kolar Johann W., 99.1% Efficient 10 kV SiC-Based Medium Voltage ZVS Bidirectional Single- Phase PFC AC/DC Stage, in IEEE Journal of Emerging and Selected Topics in Power Electronics, 1.
Accurate Transient Calorimetric Measurement of Soft-Switching Losses of 10kV SiC MOSFETs
Rothmund Daniel, Bortis Dominik, Kolar Johann, Accurate Transient Calorimetric Measurement of Soft-Switching Losses of 10kV SiC MOSFETs, in International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, CanadaIEEE, Piscataway, New Jersey, USA.
Highly Compact Isolated Gate Driver with Ultrafast Overcurrent Protection for 10 kV SiC MOSFETs
RothmundDaniel, BortisDominik, KolarJohann W., Highly Compact Isolated Gate Driver with Ultrafast Overcurrent Protection for 10 kV SiC MOSFETs, in CPSS Transactions on Power Electronics and Applications, 1.

Collaboration

Group / person Country
Types of collaboration
Freedm Center North Carolina United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
CORPE/Aalborg University Denmark (Europe)
- in-depth/constructive exchanges on approaches, methods or results
SCCER FURIES, WP3 Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Wolfspeed United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
IEEE Energy Conversion Congress and Exposition Talk given at a conference Design and Experimental Analysis of a 10 kV SiC MOSFET Based 50 kHz Soft-Switching Single-Phase 3.8 kV AC / 400 V DC Solid-State Transformer 23.09.2018 Portland, United States of America Kolar Johann W.; Bortis Dominik; Rothmund Daniel;


Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Highly Efficient 10kV SiC-Based Solid-State Transformers ETH Zürich Spotlight on Energy Research International 2018
New media (web, blogs, podcasts, news feeds etc.) Smart transformer for the energy turnaround ETH News International 2018
New media (web, blogs, podcasts, news feeds etc.) Smart All-SiC Solid-State Transformers International 2016

Awards

Title Year
ECCE Asia Best Paper Award (Second Prize) 2016
APEC Outstanding Presentation Award 2015

Abstract

This project is part 3 of the Umbrella Project "SwiSS Transformer" - Solid State SiC Transformer.Solid State Transformers (SST) could be seen as Energy Routers of the future Energy Internet and/or the Smart Grid and will provide means for electronic voltage and power flow control as well as energy storage and monitoring capabilities and therefore allow to integrate distributed renewable energy sources and to ensure highest reliability and efficiency of the energy transfer. Modern wide bandgap power semiconductors, i.e. SiC power transistors and diodes are a key enabler of SSTs due to high voltage blocking capability, low on-state losses and high switching speeds, i.e. very low switching losses. Based on these superior characteristics the switching frequency of SST systems could be increased by a factor of 10 compared to state-of-the-art concepts built with Si devices, resulting in significant material savings while still keeping an extremely high efficiency. In the course of this subproject P3 the main challenges connected with the realization of an isolated 50kW medium voltage (MV) to low voltage (LV) DC/DC converter cell for an advanced SiC SST will be addressed. 3.3.kV SiC MOSFETs and diodes available from subproject P1 will be integrated into a new package which ensures minimum commutation loop inductance despite high isolation capability and minimum thermal resistance - based on concepts developed in subproject P2 - as well as low common mode noise current emissions. Furthermore, the high frequency losses and the thermal management of the 50kHz transformer will be investigated in detail and a transformer concept will be developed which features high isolation voltage and low and/or well defined electric field stress on the insulation materials. In combination with new interconnection concepts the main power components will finally be combined with proper gate drive circuits and sensing and signal processing units into an experimental 3.3kV/400V converter cell demonstrator with a target efficiency of 99% which will provide a perfect basis for all different kinds of future highly efficient MV/LV power electronics interfaces.
-