Project

Back to overview

Renewable Hydrogen Production through Photoelectrochemical (PEC) Water Splitting

English title Renewable Hydrogen Production through Photoelectrochemical (PEC) Water Splitting
Applicant Hagfeldt Anders
Number 154002
Funding scheme NRP 70 Energy Turnaround
Research institution Laboratoire de photonique et interfaces EPFL - SB - ISIC - LPI
Institution of higher education EPF Lausanne - EPFL
Main discipline Physical Chemistry
Start/End 01.10.2014 - 31.01.2018
Approved amount 330'494.00
Show all

All Disciplines (2)

Discipline
Physical Chemistry
Other disciplines of Physics

Keywords (16)

solar energy; renewable energy; mathematical modeling; hydrogen; photoelectrochemical; PEC, water splitting; electrocatalysis; photocatalysis; water oxidation; fuel cells; electrolysis; perovskite; photovoltaic; solar fuel; carbon-neutral; hydrogen economy

Lay Summary (German)

Lead
Die Entwicklung einer nachhaltigen und klimaneutralen Energiewirtschaft ohne nukleare und fossile Brennstoffe ist ein dringendes Forschungsthema. Sonnenenergie, die die Erde erreicht, könnte den Energiebedarf der Menschheit leicht decken sofern die Wandlung in Nutzenergie effizient geschieht. Allerdings schwankt die Sonneneinstrahlung entsprechend der Tages- und Jahreszeiten, während unser Energiebedarf eher konstant ist. Die Speicherung und der Transport von Sonnenenergie ist daher ein wichtiges Forschungsthema. Ein vielversprechender Ansatz zur Lösung dieses Problems ist die solare Erzeugung von Brennstoffen, wobei die Sonnenenergie in chemischen Bindungen gespeichert ist. Ein idealer Brennstoff ist Wasserstoff (H2), welcher über die Wasserelektrolyse erzeugt werden kann. Wasserstoff kann gut gespeichert und transportiert werden und ohne Kohlendioxidemissionen in Brennstoffzellen verwendet werden.
Lay summary
Unser Projekt zielt auf die direkte Umwandlung von Sonnenenergie in Wasserstoff durch photoelektrochemische (PEC) Wasserspaltung. Wir entwickeln licht-absorbierende Halbleiter aus häufig vorkommenden Metalloxidmaterialien, welche  bei Beleuchtung das Wasser in Wasserstoff und Sauerstoff aufspalten. Insbesondere Kupferoxid, das mit einer dünnen Oxid-Schutzschicht bedeckt ist, besitzt ein grosses Potential für die solare Wasserspaltung. Diese Materialien werden im Projekt weiterentwickelt und optimiert. Es soll eine Umwandlungseffizienz von mehr als 7% erreicht werden und die Methode soll gleichzeit kostengünstig sein.

Unsere Arbeit wird einen bedeutenden Fortschritt in Richtung einer nachhaltigen Energiezukunft auf Basis von Wasserstoffproduktion aus Sonnenenergie darstellen. Erneubarer Wasserstoff wird zunehmend von Industrie und Verbrauchern für den Betrieb von Brennstoffzellen in Nischenanwendungen wie Spezialfahrzeugen und Backup-Stromversorgungslösungen nachgefragt. Wasserstoff-Autos wurden für das Jahr 2015 angekündigt. Langfristig ist die dezentrale  Wasserstoffproduktion aus Sonne auf Dächern vorgesehen. Somit könnte eine netzunabhängige Energieversorgung von Haushalten inklusive nachhaltiger Mobilitätslösungen entstehen.
Direct link to Lay Summary Last update: 15.01.2015

Lay Summary (English)

Lead
It is urgent to develop a sustainable energy economy, replacing nuclear and fossil fuels with renewable and carbon-neutral energy sources. Sunlight reaching earth provides an immense amount of energy, and efficiently harvesting it could potentially support mankind’s needs. However, sunlight is intermittent, whereas our energy demand is not. We therefore need a method of storing and transporting solar energy. Using sunlight to create fuels, where the energy is stored in chemical bonds, is a promising approach to solve this problem. An ideal fuel is hydrogen (H2) which can be produced via water electrolysis, stored and transported, and utilized without carbon emissions.
Lay summary

Subject and purpose of the project

Our project targets the direct solar-to-hydrogen conversion process by photoelectrochemical (PEC) water splitting. Using earth-abundant metal oxide materials, we will develop sunlight-absorbing semiconductor devices which, when immersed in water and illuminated, drive the splitting of water into hydrogen and oxygen. Specifically, cuprous oxide covered with thin protective oxide layers have shown promise toward the water reduction half-reaction. These materials will be advanced and optimized toward the construction of a device capable of complete water splitting at solar-to-hydrogen efficiency exceeding 7% at room temperature and wide range of light intensities.

Scientific and social impact

This work will represent a significant advancement toward a sustainable energy future based on hydrogen production from solar energy. Renewable hydrogen is increasingly demanded from industries and consumers, presently needed for operating fuel cells in niche applications such as specialty vehicles and backup power solutions, but also for fuel cell cars that are announced to enter consumer market in 2015. In the long term, decentralized PEC production of hydrogen on building roofs, similar to today’s PV panels, may provide grid-independent solar energy harvesting and storage for the public.

Direct link to Lay Summary Last update: 15.01.2015

Responsible applicant and co-applicants

Employees

Publications

Publication
Solution Processed Cu2S Photocathodes for Photoelectrochemical Water Splitting
Yu Yu-Xiang, Pan Linfeng, Son Min-Kyu, Mayer Matthew T., Zhang Wei-De, Hagfeldt Anders, Luo Jingshan, Graetzel Michael (2018), Solution Processed Cu2S Photocathodes for Photoelectrochemical Water Splitting, in ACS Energy Lett., 3, 760.
Targeting Ideal Dual-Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1-xSe2 Photocathodes
Luo Jingshan, Li Zhen, Nishiwaki Shiro, Schreier Marcel, Mayer Matthew T., Cendula Peter, Lee Yong Hui, Fu Kunwu, Cao Anyuan, Nazeeruddin Mohammad Khaja, Romanyuk Yaroslav E., Buecheler Stephan, Tilley S. David, Wong Lydia Helena, Tiwari Ayodhya N., Grätzel Michael (2015), Targeting Ideal Dual-Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1-xSe2 Photocathodes, in Advanced Energy Materials, 5(24), 1501520-1501520.
Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting
Dias Paula, Schreier Marcel, Tilley S. David, Luo Jingshan, Azevedo João, Andrade Luísa, Bi Dongqin, Hagfeldt Anders, Mendes Adélio, Grätzel Michael, Mayer Matthew T. (2015), Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting, in Advanced Energy Materials, 5(24), 1501537.

Collaboration

Group / person Country
Types of collaboration
UPorto Laboratorio de Engenharia de Processos Ambiente, Biotecnologia e Energia Portugal (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
EPFL Laboratory of Photonics and Interfaces Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
EMPA Laboratory for Thin Films and Photovoltaics Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
NRG 2018, CHALLENGES & OPPORTUNITIES IN ENERGY RESEARCH 1st winter school Poster Pushing the Boundaries of Cu2O Photocathodes for Solar Water Splitting 05.03.2018 Crans-Montana, Switzerland Pan Linfeng;
2017 MRS Fall Meeting Talk given at a conference Pushing the Boundaries of Cu2O Photocathodes for Solar Water Splitting 26.11.2017 Boston, United States of America Hagfeldt Anders; Pan Linfeng;
2016 MRS Spring Meeting Talk given at a conference Using potential-dependent quantum efficiency measurements to probe device characteristics in photoelectrodes for solar fuels generation 28.03.2016 Phoenix, United States of America Mayer Matthew;
13th Symposium for Fuel Cell and Battery Modeling and Experimental Validation Poster Spectroscopic modeling of photoelectrochemical water splitting 22.03.2016 Lausanne, Switzerland Cendula Peter; Schumacher Jürgen;
Solar Fuel Conference - Light driven water splitting using semiconductor devices Poster Optoelectronic Modeling of Hematite Photoelectrodes 10.03.2015 Mallorca, Spain Mayer Matthew; Schumacher Jürgen; Cendula Peter;


Abstract

In order to meet the ambitious goals set forth in the Energy Strategy 2050, carbon-free or carbon-neutral alternatives to fossil fuels must be established. In harnessing the largest and most promising renewable resource, our proposal centers on the sustainable generation of hydrogen fuel using solar energy. Our aim is to advance the technology of photoelectrochemical water splitting to the point where it is attractive for industrialization. Although our flagship materials iron oxide and copper oxide show tremendous promise, there remain important areas to investigate in order to realize the full potential of these materials. This proposal focuses on the synthesis and modelling of layered cuprous oxide photocathodes, and the detailed investigations of the losses in this material, both experimentally and as revealed from the modelling studies.
-