Project

Back to overview

Integration of sustainable Multi-Energy-hub Systems from the Building Performance perspective (IMES-BP)

English title Integration of sustainable Multi-Energy-hub Systems from the Building Performance perspective (IMES-BP)
Applicant Orehounig Kristina
Number 153894
Funding scheme NRP 70 Energy Turnaround
Research institution Eidg. Materialprüfungs- und Forschungsanstalt (EMPA)
Institution of higher education Swiss Federal Laboratories for Materials Science and Technology - EMPA
Main discipline Mechanical Engineering
Start/End 01.12.2014 - 28.02.2019
Approved amount 368'704.00
Show all

All Disciplines (2)

Discipline
Mechanical Engineering
Civil Engineering

Keywords (6)

future energy demand; energy-hub modelling; multi-energy technologies; renewable potential; decentralized energy supply; holistic modelling approach

Lay Summary (German)

Lead
Um den wachsenden Anforderungen an Nachhaltigkeit und Energieeffizienz gerecht zu werden, müssen bestehende Energiesysteme adaptiert werden. Dies beinhaltet einerseits die Reduktion des Energiebedarfs für den Gebäudebetrieb, aber auch den vermehrten Einsatz dezentraler erneuerbarer Energieträger. Da die Stromerzeugung aus erneuerbaren Energieträgern stark fluktuiert, und Energieverbrauch und -erzeugung zeitlich oft nicht übereinstimmen, bedarf es einem abgestimmten Zusammenspiel zwischen Produktion, Speicherung und Verteilung von Energie. Dazu werden zahlreiche neue Technologien entwickelt die es gilt in bestehende Energiesysteme zu integrieren. Die erfolgreiche Integration einer dezentralen Versorgung mit hauptsächlich erneuerbaren Energien erfordert eine sorgfältige Planung zukünftiger städtischer Energiesysteme und Strategien, um die Energieflüsse innerhalb eines Quartiers optimal zu verwalten.
Lay summary

Inhalt und Ziel

Das Projekt IMES-BP beschäftigt sich mit der Entwicklung von Simulationsmodellen zur Optimierung von Energiesystemen auf Quartiersebene. Das Simulationsmodell basiert auf der Erweiterung des Energy-Hub-Konzepts, mit dem verschiedene Energieströme innerhalb eines Systems optimiert werden können. Diese Methode ermöglicht es verschiedene Kombinationen von Technologien durch Umwandlung, Speicherung und Verteilung von Energie zu bewerten und multi-kriteriell zu optimieren. Dabei liegt der Fokus auf der Beurteilung neuer Technologien wie Brennstoffzellen-basierte Mikro-Kraftwärmekopplung (MCHP) und Power-to-Gas-Technologien (P2G), kombiniert mit anderen innovativen Lösungen. Die Ziele des Projekts beinhalten einerseits die simulationstechnische Auswertung von Entwicklungsszenarien des Energieverbrauchs des Gebäudebestands, die Integration dezentraler Energieträger auf Quartiersebene, sowie die Evaluation von Technologien, um Energieströme in einem Quartier zu verwalten. Abschliessend werden Energieszenarien für verschiedene Quartiertypologien entwickelt, und in einem iterativen Prozess sozio-ökonomisch und technisch bewertet.

Wissenschaftlicher und gesellschaftlicher Kontext

Die komplexen Interaktionen zwischen netzgebundenen Energieströmen (Strom, Gas, Wärme, Kälte) und lokaler Erzeugung (Solarstrom, Biomasse, etc.), Nutzung und Speicherung  innerhalb eines Quartiers sollen darstellbar und bewertbar werden. Die Innovation im Bereich Modellierung und Simulation ergibt sich durch die Integration von Modellen für verschiedene Umwandlungs- und Speichertechnologien sowie die Abbildung von Systemabhängigkeiten. Die in Betracht gezogenen Technologien und deren Bewertung deckt sich mit den Entwicklungsszenarien der Energiestrategie 2050, und wird einen Beitrag zur Erreichung der Energieziele der Schweiz beisteuern.

 

Direct link to Lay Summary Last update: 22.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Power-to-Gas for Decentralized Energy Systems: Development of an Energy Hub Model for Hydrogen Storage
Murray Portia, Omu Akomeno, Orehounig Kristina, Carmeliet Jan (2017), Power-to-Gas for Decentralized Energy Systems: Development of an Energy Hub Model for Hydrogen Storage, in Building Simulation 2017, San FranciscoBuilding Simulation, San Francisco.
Dynamic building energy demand modelling at urban scale for the case of Switzerland
Wang Danhong, Orehounig Kristina, Carmeliet Jan (2016), Dynamic building energy demand modelling at urban scale for the case of Switzerland, in CLIMA 2016 - proceedings of the 12th REHVA World Congress: volume 4, Aalborg.

Collaboration

Group / person Country
Types of collaboration
Forschungsstelle Energienetze, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
EWZ Switzerland (Europe)
- Industry/business/other use-inspired collaboration
USYSTdLab, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Laboratory for Energy Conversion, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
SusTec, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Energie 360 Switzerland (Europe)
- Industry/business/other use-inspired collaboration
IfA ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Stadt Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Separation processes laboratory, ETH Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
PhD Seminar Empa Poster Integration of Sustainable Multi-Energy Systems (IMES): Decentralized Energy Systems 14.11.2017 Dübendorf, Switzerland Murray Portia;
Building Simulation 2017 Conference Talk given at a conference Power-to-Gas for Decentralized Energy Systems: Development of an Energy Hub Model for Hydrogen Storage. 07.08.2017 San Francisco, United States of America Murray Portia; Carmeliet Jan; Orehounig Kristina;
CLIMA2016- 12th REHVA World congress Talk given at a conference Dynamic building energy demand modelling at urban scale for the case of Switzerland 22.05.2016 Aalborg, Denmark Orehounig Kristina; Carmeliet Jan;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Klimaschutzcluster @ Technologiecluster Zug Talk 23.10.2017 Zug, Switzerland Orehounig Kristina;
Swissbau Focus 2016 Talk 13.01.2016 Basel, Switzerland Orehounig Kristina;


Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) Energy Bulletin Verband Schweizerischer Elektrizitätsunternehmen German-speaking Switzerland 2017

Associated projects

Number Title Start Funding scheme
165978 Renewable energy powered district heating networks (RePoDH) 01.11.2016 Project funding (Div. I-III)

Abstract

In Switzerland (and many other countries) a major part of the final energy demand is due to buildings. Preventing disastrous levels of man-made climate change, ensuring energy security, coping with depletion of fossil fuels, and providing a more sustainable future, all depends upon the rapid development and effective integration of renewable energy systems. Both energy demand reduction measures by increasing the building energy efficiency and active energy generation will be required in the future. This can be achieved with local integration of renewable energy systems and connecting buildings with local energy grids and decentralized energy production facilities. To overcome periods where energy from renewables is not available, additionally new technologies are being developed in the area of micro cogeneration (e.g. internal combustion engines, micro gas turbines, and fuel cells) and energy storage (power to gas, batteries, etc.). To account for a reliable energy supply in future neighborhoods, decentralized energy technologies have to be combined with concepts to manage these fluctuating power sources. This can be achieved by applying the concept of an energy hub, where different combinations of energy systems can be assessed by regulating conversion, storage, and distribution of energy. In order to find the best technologies combination and given the complexity of the system, several aspects must be tackled at the same time, which will be investigated within the umbrella project “Integration of sustainable multi-energy-hub systems at neighborhood scale”. The goal of this sub-project IMES-BP is to develop models and methods to determine, for a given case, the best combination of technologies and to provide a comprehensive analysis of the decentralized energy production at neighbourhood scale. This includes i) a method to assess future buildings energy consumption, ii) methods to assess the potential of integrating renewable energy carriers at both building and neighbourhood level, iii) the development of an optimization tool, which is based on the energy hub concept, to assess the performance of a combination of conversion and storage technologies to manage energy flows at building and neighbourhood level iv) and finally, the development, assessment and parametric analysis of future decentralized energy system layouts for different neighbourhood configurations, leading to the identification of the best solutions for the future. The results define the set of technologies to be selected and assembled in the energy hub concept to make the significant contribution which is needed for the Swiss energy transformation. Results of this work, especially results of the parametric analysis, are used to benchmark energy reduction and potentials for renewables with results of existing studies in the frame of the “Energy strategy 2050”. The models developed and the results of the parametric analysis assessed can be used to better identify the technologies suitable to a specific urban quarter and thus initiate and specify more accurately the necessary strategies and technologies for both retrofit as well as new urban development activities. Concepts, methods and technologies can be transferred to ongoing city-rural energy assessment platforms and methods under development in the frame activities such as “Energiestadt”, “Smart cities”, “2000-Watt-society”, and possible also “Minergie”. The results will also be further developed and used in real case planning by urban planning and consultancy offices.
-