Project

Back to overview

Designing multifunctional materials for proton exchange membrane fuel cells

English title Designing multifunctional materials for proton exchange membrane fuel cells
Applicant Schumacher Jürgen
Number 153790
Funding scheme NRP 70 Energy Turnaround
Research institution Institute of Computational Physics Zürcher Hochschule für Angewandte Wissenschaften
Institution of higher education Zurich University of Applied Sciences - ZHAW
Main discipline Material Sciences
Start/End 01.10.2014 - 31.01.2018
Approved amount 341'998.00
Show all

All Disciplines (6)

Discipline
Material Sciences
Other disciplines of Physics
Mathematics
Fluid Dynamics
Physical Chemistry
Other disciplines of Engineering Sciences

Keywords (7)

multifunctional materials; pore-scale model; modeling and simulation; microstructure analysis; proton exchange membrane fuel cells (PEM, PEFC); tomography; multiphysics model

Lay Summary (German)

Lead
LEADProtonenaustauschmembran-Brennstoffzellen dienen zur Umwandlung der chemischen Energie eines Brennstoffs (z.B. Wasserstoff) in elektrische Energie. Als einziges Nebenerzeugnis der Energiewandlung („Abgas“) entsteht Wasser.In einer Brennstoffzelle finden mehrere physikalische und elektrochemische Prozesse statt; hierzu werden spezielle multifunktionale Materialien benötigt. Für einen effizienten Betrieb der Zellen müssen mehrere Transportprozesse in porösen Materialien aufeinander abgestimmt werden. Forschungsgebiete des Projekts sind die experimentelle Charakterisierung und das modellbasierte Design der multifunktionaler Materialien.
Lay summary

INHALT UND ZIEL DES FORSCHUNGSPROJEKTS

Ziel des Forschungsprojekts ist es, die in Protonenaustauschmembran-Brennstoffzellen verwendeten multifunktionalen porösen Materialien zu verbessern. Die Materialien sollen ein optimales Wassermanagement der Zellen ermöglichen - wichtig ist dabei der Abtransport von flüssigem Wasser, das bei der elektrochemischen Reaktion in den Brennstoffzellen entsteht. Zudem müssen die Materialien den Transport elektrischer Ladung, von Wärme und von Gasen ermöglichen und kostengünstig sein.

Unser Ziel ist es ein experimentell validiertes Computermodell von Brennstoffzellen zu entwickeln, wobei v.a. die Prozesse der Produktion und des Transports von flüssigem Wasser berücksichtigt werden sollen. Unser Arbeitsprogramm ist dabei: (i) experimentelle Bestimmung der Eigenschaften der trockenen, porösen Materialien mithilfe von Röntgentomographie. Es werden Algorithmen für die Bildanalyse und für das Post-Processing entwickelt, (ii) Entwicklung eines Modells auf der Porenskala, in dem der Transport von flüssigem Wasser und der Einfluss des Wassers auf andere Transporteigenschaften (Gase, Wärme, elektrische Ladung) berücksichtigt werden, (iii) Untersuchung des Wassers an den Grenzflächen der Materialien.

 

WISSENSCHAFTLICHER- UND GESELLSCHAFTLICHER KONTEXT DES FORSCHUNGSPROJEKTS

Das Projekt wird dazu beitragen, die Performance von Brennstoffzellen zur erhöhen und die Kosten für die Produktion von elektrischem Strom aus Wasserstoff zu verringern. Ein attraktiver Preis und eine hohe Leistungsdichte sollen die Brennstoffzellen zu einer wettbewerbsfähigen emissionsfreien Technologie im Vergleich zum Einsatz fossiler Energiewandler im Mobilitätsbereich machen. Ihre Anwendung wird zur Verringerung der CO2-Emissionen im Transportbereich beitragen. Weitere Anwendungen sind der Einsatz im Hausenergiebereich zur kombinierten Wärme- und Stromproduktion.

Direct link to Lay Summary Last update: 20.10.2014

Lay Summary (Italian)

Lead
TITOLO DEL PROGETTO DI RICERCAProgettazione di materiali multifunzionale per celle a combustibile a membrana protonica polimericaIN SINTESILe celle a combustibile a membrana protonica polimerica convertono l’energia chimica di un combustibile (l’idrogeno) in elettricità attraverso una reazione chimica che produce soltanto acqua.Il funzionamento di una cella a combustibile è determinato da vari processi fisici ed elettrochimici, e pertanto sono necessari materiali multifunzionali. L’impiego efficiente di una cella a combustibile, richiede di specificare peculiari proprietà di trasporto per i materiali con cui è assemblata. Le ricerche condotte nell’ambito di questo progetto puntano alla caratterizzazione sperimentale e ad una progettazione model-based dei suddetti materiali multifunzionali.
Lay summary

OGGETTO E SCOPO
L’obiettivo del progetto di ricerca è quello di migliorare i materiali multifunzionali impiegati per le celle a combustibile a membrana polimerica. I materiali sono fondamentali per una gestione ottimale dell’acqua prodotta nelle celle, in particolar modo per quello che concerne il trasporto dell’acqua in forma liquida originata dalla reazioni elettrochimiche. Inoltre, i nuovi materiali devono essere efficienti sia in termini di costo che di proprietà elettriche e di trasporto dei gas.
Il nostro obiettivo è quello di sviluppare e validare sperimentalmente un modello computerizzato delle celle a combustibili che includa effetti dovuti alla produzione e al trasporto dell’acqua in forma liquida. Per giungere a questo risultato è necessario:  (i) determinare le proprietà dei materiali asciutti usando metodi di imaging a raggi X e algoritmi di post-processing; (ii) sviluppare un modello matematico, alla scala dei pori, che includa il trasporto dell’acqua liquida e consideri il suo impatto sulle proprietà di trasporto (gas, carica e calore); (iii) investigare il comportamento dell’acqua nelle vicinanze delle interfacce materiali delle celle a combustibili

IMPATTO SOCIALE E SCIENTIFICO DEL PROGETTO DI RICERCA
Il progetto contribuirà a migliorare le prestazioni delle celle a combustibili e ad abbassare il costo della conversione dell’energia chimica (immagazzinata, ad esempio, nell’idrogeno) in elettricità. Un prezzo competitivo ed un’ alta densità di potenza permetterebbero alle celle a combustibile a membrana polimerica di essere un’ opzione competitiva ed a emissioni zero rispetto alle tecnologie a combustibile fossile, con specifico riferimento al settore della mobilità. La loro applicazione  contribuirà ad abbassare i livelli di emissioni di anidride carbonica nel settore dei trasporti. La stessa tipologia di celle a combustibile è impiegata in applicazioni di tipo residenziale per la co-generazione di potenza e calore.

Direct link to Lay Summary Last update: 20.10.2014

Lay Summary (English)

Lead
IN SUMMARYProton exchange membrane fuel cells convert the chemical energy from a fuel (hydrogen) into electricity through a chemical reaction with water being the only by-product. The fuel cell operation is determined by several physical and electrochemical processes. For this, special multifunctional materials are required. Efficient operation of a fuel cell requires tailored transport properties that take place in the porous materials. The research topic of this project is the experimental characterisation and model-based design of the multi-functional materials.
Lay summary

SUBJECT AND PURPOSE

The goal of the research project is to improve multi-functional materials for proton exchange membrane fuel cells. The materials serve for optimal water management in the cells – thereby, the transport of liquid water that is produced in the electrochemical reaction is particularly important. Furthermore, the materials need to be cost-efficient and allow for simultaneous charge transport, heat transport, and gas transport.

Our goal is to develop and experimentally validate a computer model of fuel cells that includes the effects due to the production and transport of liquid water. To achieve this goal, we will: (i) determine the properties of the dry materials by using X-ray imaging and the algorithms for post-processing, (ii) develop a pore-scale model that includes the liquid water transport and its impact on other transport properties (gas transport, heat and charge) and (iii) investigate the behaviour of water in the vicinity of the material interfaces in the fuel cell.

SCIENTIFIC AND SOCIAL IMPACT OF THE RESEARCH PROJECT

The project will contribute to improve the performance of fuel cells and lower the price of conversion of chemical energy (stored in e.g. hydrogen) to electricity. An attractive price and a high power density will make proton exchange membrane fuel cells a competitive zero-emission opponent in comparison with the fossil fuel technologies in the mobility sector. Their application will contribute to lower the CO2-emissions in the transport sector. The same kind of fuel cells are used in residential applications for the combined production of heat and power.

Direct link to Lay Summary Last update: 20.10.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Modeling the Effects of Using Gas Diffusion Layers With Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells
Dujc Jaka, Forner-Cuenca Antoni, Marmet Philip, Cochet Magali, Vetter Roman, et al. (2018), Modeling the Effects of Using Gas Diffusion Layers With Patterned Wettability for Advanced Water Management in Proton Exchange Membrane Fuel Cells, in Journal of Electrochemical Energy Conversion and Storage, 15(2), 021001.
Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability
Holzer Lorenz, Pecho Omar, Schumacher Jürgen, Marmet Philip, Büchi Felix, et al. (2017), Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part II: pressure-induced water injection and liquid permeability, in Electrochimica Acta, 241, 414-432.
Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL
Holzer Lorenz, Pecho Omar, Schumacher Jürgen, Marmet Philip, Stenzel Ole, Büchi Felix, et al. (2017), Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL, in Electrochimica Acta, 227, 419-434.
Predicting effective conductivities based on geometric microstructure characteristics
Stenzel Ole, Pecho Omar, Holzer Lorenz, Neumann Matthias, Schmidt Volker (2016), Predicting effective conductivities based on geometric microstructure characteristics, in AIChE Journal, 62(5), 1834-1843.
An ensemble Monte Carlo simulation study of water distribution in porous gas diffusion layers for proton exchange membrane fuel cells
Capone Luigino, Marmet Philip, Holzer Lorenz, Dujc Jaka, Schumacher Jürgen, Lamibrac Adrien, Büchi Felix, Becker Jürgen, An ensemble Monte Carlo simulation study of water distribution in porous gas diffusion layers for proton exchange membrane fuel cells, in Journal of Electrochemical Energy Conversion and Storage.

Collaboration

Group / person Country
Types of collaboration
Fraunhofer Institute for Solar Energy Systems Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
Johnson Matthey Great Britain and Northern Ireland (Europe)
- Industry/business/other use-inspired collaboration
Fraunhofer Institute for Chemical Technology ICT Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Bosch; Chemical Processes and Technology, Energy Storage and Conversion Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel
- Industry/business/other use-inspired collaboration
Volkswagen, Konzernforschung Antriebe Brennstoffzelle (K-EFAF/V) Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration
ETHZ, Particle Technology Laboratory, Institute of Process Engineering Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
Ulm University Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel
- Industry/business/other use-inspired collaboration
LITEN /CEA France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
SCCER: Efficient Technologies and Systems for Mobility Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
3rd International Conference on Multiscale Computational Methods for Solids and Fluids Talk given at a conference Approaches and Challanges of Multi-Scale Modeling of Polymer Electrolyte Fuel Cells 20.09.2017 Ljubljana, Slovenia Dujc Jaka;
4th SCCER Mobility Annual Conference Poster Current Challenges in Two-Phase PEMFC Modeling 15.09.2017 ETH Zürich, Switzerland Schumacher Jürgen; Vetter Roman;
Next Generation PEM Fuel Cells: Strategic Partnerships for Tackling Multiscale Challenges Poster Advances in Multi-Scale Modelling of PEFCs 02.07.2017 Bad Honnef, Germany Vetter Roman; Schumacher Jürgen;
ModVal14: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Talk given at a conference Microstructure limitations for relative permeability and liquid drainage in fibrous GDL (PEFC): The importance of the 'short range effect' 02.03.2017 Karlsruhe Institute of Technology, Germany Büchi Felix; Pecho Omar; Stenzel Ole; Holzer Lorenz; Schumacher Jürgen; Lamibrac Adrien;
ModVal14: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Poster Toward predictive PEFC simulation: The importance of thermal and electrical contact resistance 02.03.2017 Karlsruhe Institute of Technology, Germany Schumacher Jürgen; Vetter Roman;
ModVal14: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Poster Advances in Multi-Scale Modeling of PEFCs 02.03.2017 Karlsruhe Institute of Technology, Germany, Germany Lamibrac Adrien; Vetter Roman; Marmet Philip; Holzer Lorenz; Dujc Jaka; Schumacher Jürgen; Büchi Felix;
ModVal14: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Talk given at a conference Influence of pore scale material properties on the performance of proton exchange membrane fuel cells 02.03.2017 Karlsruhe Institute of Technology, Germany Holzer Lorenz; Vetter Roman; Schumacher Jürgen; Dujc Jaka; Lamibrac Adrien; Büchi Felix; Marmet Philip;
7th International Conference on Fundamentals and Development of Fuel Cells, Stuttgart, 2017 Talk given at a conference From pore-scale material properties to macro-homogeneous PEFC modeling 31.01.2017 Stuttgart, Germany Lamibrac Adrien; Schumacher Jürgen; Vetter Roman; Büchi Felix; Marmet Philip; Dujc Jaka; Holzer Lorenz;
Material Challenges for Fuel Cell and Hydrogen Technologies – From Innovation to Industry Talk given at a conference Influence of pore-scale material properties on the performance of proton exchange membrane fuel cells 19.09.2016 Grenoble, France Schumacher Jürgen;
3rd SCCER Mobility Annual Conference Poster Computer simulation of liquid water saturation in porous media of fuel cells 16.09.2016 Zürich, Switzerland Capone Luigino; Dujc Jaka; Schumacher Jürgen;
Interpore 8th 2016 Poster Segmentation of Low Quality Gas Diffusion Layer X-ray Tomographic Microscopy Images 09.05.2016 Cincinnati, Ohio, United States of America Büchi Felix; Lamibrac Adrien;
ModVal13: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Talk given at a conference L. Capone, P. Marmet, A. Lamibrac, J. Dujc, L. Holzer, F.N. Büchi, J.O. Schumacher, “Ensemble-based study of equilibrium liquid water distribution in PEFC gas diffusion layers” 22.03.2016 Lausanne, Switzerland Lamibrac Adrien; Holzer Lorenz; Capone Luigino; Schumacher Jürgen; Marmet Philip; Dujc Jaka; Büchi Felix;
ModVal13: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Poster Simulation-based optimization of patterned GDL for Water Management in PEFC 22.03.2016 Lausanne, Switzerland Schumacher Jürgen; Dujc Jaka;
ModVal13: Symposium for Fuel Cell and Battery Modeling and Experimental Validation Talk given at a conference A. Lamibrac, M. Toulec, J. Roth, F.N. Büchi, “Improvements of gas transport characterization in GDL based on XTM imaging” 22.03.2016 Lausanne, Switzerland Büchi Felix; Lamibrac Adrien;
2nd Annual Conference SCCER-Mobility Poster A novel Monte Carlo technique for simulating liquid water distribution in gas diffusion layers of PEFCs 26.08.2015 Zürich, Switzerland Schumacher Jürgen; Capone Luigino; Lamibrac Adrien;
ModVal12: Symposium on Fuel Cell and Battery Modelling and Experimental Validation Talk given at a conference Parameterisation of macrohomogeneous models of proton exchange membrane fuel cells 26.03.2015 Freiburg Breisgau, Germany Holzer Lorenz; Lamibrac Adrien; Schumacher Jürgen; Dujc Jaka; Stenzel Ole; Büchi Felix; Capone Luigino;
ModVal12: Symposium on Fuel Cell and Battery Modelling and Experimental Validation Talk given at a conference Numerical simulation of liquid water saturation in cathode side gas diffusion layers of PEFCs 26.03.2015 Freiburg Breisgau, Germany Capone Luigino; Schumacher Jürgen; Dujc Jaka;
ModVal12: Symposium on Fuel Cell and Battery Modelling and Experimental Validation Poster Voxel-based modelling of water distribution in PEM porous media 26.03.2015 Freiburg Breisgau, Germany Stenzel Ole; Büchi Felix; Holzer Lorenz; Lamibrac Adrien; Capone Luigino; Schumacher Jürgen; Dujc Jaka;


Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
MAS | CAS ETH in Mobilität der Zukunft, Modul M-TP1 Technologie- Potenziale: Antriebs-/ Fahrzeugtechnik und Energieträger Performances, exhibitions (e.g. for education institutions) 25.10.2017 ETH, Zürich, Switzerland Büchi Felix; Schumacher Jürgen;
Workshop »Charakterisierung von Brennstoffzellenstapeln« Workshop 21.06.2016 Freiburg Breisgau, Germany Schumacher Jürgen;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Podium «Nachhaltige Mobilität» German-speaking Switzerland 2018

Use-inspired outputs

Software

Name Year
Free open reference implementation of a two-phase PEM fuel cell model 2018


Associated projects

Number Title Start Funding scheme
166064 Sub-second dynamics of liquid water transport in polymer electrolyte fuel cells revealed by 4D X-ray Tomographic Microscopy 01.11.2016 Project funding (Div. I-III)
169913 Coupled multi-phase transport in porous layers for fuel cells utilizing evaporative cooling 01.02.2017 Project funding (Div. I-III)

Abstract

This project is part of the joint project "Reduction and reuse of CO2: renewable fuels for efficient electricity production" that combines innovative technologies for I) hydrogen production from renewable resources (PEC water splitting), II) low temperature methanation of CO2 (catalysis) with renewable hydrogen, and III) electricity supply from renewable energy carriers by conversion with high efficiency technologies (fuel cells). This project addresses fuel cells operating on pure hydrogen that produce zero emissions at the source. Electric vehicles containing proton exchange membrane fuel cells (PEFC) have the potential to replace conventional combustion based vehicles. Thereby, fuel cell technology can contribute substantially to the reduction of the CO2 emissions in the mobility sector. Other applications are expected for combined heat and power (CHP) units, and backup power units.The research topic of the project is to design multifunctional materials for polymer electrolyte fuel cells (PEFC) with customised local transport properties (particularly for the transport of liquid water). These new multifunctional, high performance, low cost materials will increase cell performance and robustness through optimised water management, reduced complexity of the balance of plant (BoP) by operating on dryer reactant gases, improve durability by more homogeneous humidification in the plane of the cell and thus, considerably reduce the cost of PEFC per unit of energy produced. This is important for the market introduction of PEFCs.The following results are expected from the project:• Virtual material models and material parameterisations that are important for material producers. • Different software packages for pore-scale simulations of liquid water in porous materials and for large-area PEFC simulations.• Follow-up industry projects on material design with PEFC component suppliers, and transfer of the project results to Swiss SMEs that can take part in the value chain of PEFCs. The work is split in four work packages. In WP1 virtual material models of the dry gas diffusion layer (GDL) and the microporous layer (MPL) of PEFCs are constructed by use of tomographic image data (X-ray, FIB-SEM and BIB-SEM). The transport properties (gas diffusion, charge, heat) of the materials are extracted from the tomograms. Liquid water transport in the porous layers is investigated in WP2: a pore-scale model is implemented, where the 3D fiber / pore-structure is accounted for. From the pore-scale model we obtain the 3D-distribution of the water filled and open (gaseous) pore domains. A topological analysis of the filled and open domains obtained by the simulation results are compared to the 3D-data (from X-ray tomography of wet samples). Topological information of the domains includes tortuosity, constrictivity, connectivity, volume fraction, surface area etc. Surface properties play a decisive role in the behaviour of the porous materials for the uptake, transport and release of water. Therefore the interaction of liquid water with the surface (i.e. release of droplets) and the properties of the materials (effective and apparent contact angle) need to be better understood, which is the focus of WP3. In WP4, a multi-scale model is developed that links the pore-scale model of the GDL/MPL to a macrohomogeneous multiphysics model of a PEFC. New multifunctional material designs are proposed on the basis of this model.
-