Project

Back to overview

ACTIVE INTERFACES - Holistic strategy for PV adapted solutions embracing the key technological issues

English title ACTIVE INTERFACES - Holistic strategy for PV adapted solutions embracing the key technological issues
Applicant Ballif Christophe
Number 153762
Funding scheme NRP 70 Energy Turnaround
Research institution Institut de microtechnique EPFL - STI - IMT
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.10.2014 - 31.12.2018
Approved amount 335'621.00
Show all

All Disciplines (3)

Discipline
Material Sciences
Electrical Engineering
Other disciplines of Engineering Sciences

Keywords (5)

Photovoltaics; Buildings; Architecture; BIPV; sustainability

Lay Summary (French)

Lead
L'intégration architecturale du photovoltaïque (BIPV) était annoncée comme une révolution sur le marché depuis plusieurs années. Cependant aucune des prédictions ne s'est réalisée, ceci souvent en raison des coûts additionnels de tels éléments par rapport aux modules photovoltaïques conventionnels. Cependant d'autres blocages expliquent le faible déploiement du BIPV jusqu’à présent: Outre certaines problématiques purement technologiques, on constate que des facteurs sociaux peuvent également être limitant. En particulier, les acteurs du bâtiment tels qu'architectes, entrepreneurs généraux et clients privés ne sont pas toujours bien informés sur les possibilités du BIPV et craignent les possibles problèmes et coûts relatifs à la maintenance. Tous ces aspects ont jusqu'alors entravé le développement du BIPV à large échelle malgré ses nombreux avantages tels que la versatilité des éléments de construction (rigidité ou flexibilité, couleur, transparence, dimension "sur mesure").
Lay summary

Contenu et objectifs du travail de recherche

L'objectif principal de ce projet est d'identifier les obstacles majeurs au déploiement à large échelle du PV comme élément de construction et de proposer des solutions pour les réduire. Dans ce but, le projet va (i) offrir une meilleure compréhension des réussites et échecs des projets de BIPV présents et passés, ceci d'un point de vue technologique, économique et de l'acceptation des concepts proposés par les acteurs impliqués; (ii) analyser les solutions BIPV qui ont le potentiel d'être acceptées par la majorité des acteurs, (iii) proposer une nouvelle méthodologie pour prévoir le développement du BIPV, incluant un modèle global de possibles défaillances techniques pour les éléments PV et (iv) proposer et démontrer la faisabilité de prototypes d'une nouvelle génération, présentant à la fois une faible empreinte écologique et le potentiel de fournir une part substantielle de l'électricité en Suisse tout en créant une valeur industrielle pour le pays. Finalement, une sélection de bâtiments de la ville de Neuchâtel seront étudiés comme cas d'exemples concrets.

 

Contexte scientifique et social du projet de recherche

Ce projet générera des informations essentielles sur les problématiques technologique et les barrières sociales entravant le déploiement de l'intégration architecturale du photovoltaïque. Il proposera des solutions pour résoudre les aspects autant technologiques que sociaux, qui devraient ensuite constituer des atouts considérables pour les divers acteurs du domaine. De plus, ce projet va permettre une prise de conscience plus large de la part du public des avantages du BIPV.

 

Direct link to Lay Summary Last update: 04.12.2014

Lay Summary (English)

Lead
Building integration of photovoltaic (BIPV) has been anticipated as a “market boom” for many years, but, in practice, none of the predictions has hit the market, mainly because of the cost adds-on as compared to conventional PV. But further barriers have to be overcome in order to achieve a larger BIPV deployment. These include some technological oriented aspects, such as the reliability with time and hence definition of new standards of such products where the PV components must be considered as a building elements. Furthermore, social factors also play a role, as architects, investors and home-owners are not yet always aware of the availability of such products or afraid by possible maintenance issues. All these aspects strongly limit the deployment of BIPV, despite an advantageous versatility with BIPV products extending from rigid to flexible, from colored to semi-transparent, and even customized-sized elements.
Lay summary

Content and research objectives

The main goal of this project is to investigate the major reasons and obstacles to a massive PV integration and to propose possible solutions. For this purpose, this project will (i) offer a better understanding of the failures and success of past and present BIPV solutions, in terms of technological choice, cost potential and acceptance; (ii) analyze BIPV solutions that have the potential to reach sufficient acceptance, (iii) propose a new methodology for the development of BIPV products, including a global failure model for the PV parts and (iv) demonstrate a next generation of BIPV products that satisfy manufacturability and low ecological footprint, with the potential of providing a substantial part of the Swiss electricity while generating an industrial value. Furthermore, practical cases will be assessed on sets of selected buildings in Neuchâtel.

Scientific and social context of the research

This project will generate new and essential information concerning technological issues and social barriers and it will propose solutions to overcome them. Hence, the outcome of this project will be of considerable value for the PV and building actors, including architects and installers. Furthermore, this project should significantly increase the public awareness towards BIPV.

 

Direct link to Lay Summary Last update: 04.12.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Industrial Data-Based Life Cycle Assessment of Architecturally Integrated Glass-Glass Photovoltaics
Park Jeeyoung, Hengevoss Dirk, Wittkopf Stephen (2019), Industrial Data-Based Life Cycle Assessment of Architecturally Integrated Glass-Glass Photovoltaics, in Buildings, 9(1), 8-8.
Robust Glass-Free Lightweight Photovoltaic Modules With Improved Resistance to Mechanical Loads and Impact
Martins Ana C., Chapuis Valentin, Virtuani Alessandro, Ballif Christophe (2019), Robust Glass-Free Lightweight Photovoltaic Modules With Improved Resistance to Mechanical Loads and Impact, in IEEE Journal of Photovoltaics, 9(1), 245-251.
Thermo-mechanical stability of lightweight glass-free photovoltaic modules based on a composite substrate
Martins Ana C., Chapuis Valentin, Virtuani Alessandro, Li Heng-Yu, Perret-Aebi Laure-Emmanuelle, Ballif Christophe (2018), Thermo-mechanical stability of lightweight glass-free photovoltaic modules based on a composite substrate, in Solar Energy Materials and Solar Cells, 187, 82-90.
Light and durable: Composite structures for building-integrated photovoltaic modules
Martins Ana C., Chapuis Valentin, Sculati-Meillaud Fanny, Virtuani Alessandro, Ballif Christophe (2018), Light and durable: Composite structures for building-integrated photovoltaic modules, in Progress in Photovoltaics: Research and Applications, 26(9), 718-729.

Collaboration

Group / person Country
Types of collaboration
Prof Dr Guillaume Habert / ETHZ, Switzerland Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Meyer Burger Switzerland (Europe)
- Industry/business/other use-inspired collaboration
Econcept Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Industry/business/other use-inspired collaboration

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
EUPVSEC 2018 Talk given at a conference Lightweight solar PV modules 24.09.2018 Brussels, Belgium Ballif Christophe; Martins Ana;
EUPVSEC 2017 Talk given at a conference Lightweight solar PV modules 17.09.2018 Amsterdam, Netherlands Martins Ana; Ballif Christophe;
ieee PVSC Conference Talk given at a conference Lightweight solar PV modules 12.06.2017 Washington, United States of America Ballif Christophe; Martins Ana;
ACTIVE INTERFACES PhD Seminars Poster Building Integrated Photovoltaic Elements: Challenges in Design and Reliability. 21.04.2016 EPFL, Switzerland Martins Ana;
3rd Zero Carbon Conference Talk given at a conference Nouvelles solutions photovoltaïques pour l’environnement construit : technologies, prix et acceptation 18.11.2015 Fribourg, Switzerland Ballif Christophe;
Workshop Lifetime and Reliability issues in PV Talk given at a conference Reliability of PV modules and long-term performance prediction 09.09.2015 Manno, Switzerland Ballif Christophe;
13th National photovoltaic congress Talk given at a conference R&D from material preparation up to next generation manufacturing: opportunities for local companies 16.03.2015 Basel, Switzerland Ballif Christophe;
13th National photovoltaic congress Talk given at a conference New approaches for BIPV elements: from thin film terra-cotta to crystalline white modules 16.03.2015 Basel, Switzerland Perret-Aebi Laure-Emmanuelle;


Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) "Catalogue of technical solutions for BIPV implementation, Active Interfaces Pro International 2016

Patents

Title Date Number Inventor Owner
Lightweight solar photovoltaic module 22.08.2017 PCT/EP2017/071094

Abstract

Swiss roofs and façades have a theoretical potential of providing up to one third of the Swiss electricity demand (~ 20 TWh). Because of (i) land scarcity, (ii) need to renew a large fraction of Swiss roofs and façades in the coming decades, (iii) aesthetic criteria, and (iv) the legal frame, a strong fraction of this potential could be exploited through building integrated photovoltaics (BIPV). Theoretically BIPV systems can provide not only a large fraction of Swiss electricity production but they can also lead to low electricity cost (<10 cts/kWh), as integrated PV elements can substitute part of the building envelope, thereby reducing the extra-costs linked to PV.Practically however, only a small fraction of today’s installed PV systems fulfill the criteria of aesthetic and cost effective integration into the buildings. The general reasons or obstacles are treated in detail in the joint project. As key factors though, the low volume and the complexity of most BIPV products, linked to the lack of awareness of possible users and/or the conservative approach (“no risk” on my building), can be mentioned. This is a paradox at a time when “standard” PV components have come to prices, which are in the range of tiles or façade elements.The objectives of this project are thus to:- Understand the reasons of failures/success of most BIPV solutions, in terms of technological choice, cost potential and acceptance and to propose a global new methodology for the development of BIPV products- Analyze, based on evolution of the mainstream PV technology, which kind of BIPV solutions have the potential to reach sufficient acceptance (aesthetics and reliability, ease of installation) and hence sufficient volumes (allowing for low costs), targeting implementation in the archetypical Swiss urban landscape - Demonstrate a novel generation of BIPV products, satisfying manufacturability, durability (reliability), low ecological footprint, with a potential for both providing a substantial part of Swiss electricity and for generating a clean-tech value (e.g. through dedicated elements assembly and manufacturing or export of solutions), and to make detailed case studies (and implementation) at specific representative building categories in Neuchâtel.- Establish sets of recommendation for technological developments, for stakeholders of building sectors and for political/legal aspects
-