Project

Back to overview

Small modular Molten Salt Fast Reactor design for closed fuel cycle

Applicant Mikityuk Konstantin
Number 152612
Funding scheme Project funding (Div. I-III)
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Other disciplines of Engineering Sciences
Start/End 01.06.2014 - 31.05.2017
Approved amount 175'154.00
Show all

Keywords (3)

thorium fuel cycle; nuclear waste burning; molten salt reactor

Lay Summary (French)

Lead
Les systèmes nucléaires avancés utilisant un combustible liquide sous forme de sels fondus possèdent des caractéristiques de sûreté et de développement durable uniques en leur genre. Ce projet étudie plusieurs concepts et propose un design préliminaire d’un tel réacteur.
Lay summary

Le Monde a besoin d’énergie générée de manière durable, propre, abondante, bon marché et sûre. Les avancées technologiques dans le domaine nucléaire permettent de donner des réponses aux problèmes existants de cette forme d’énergie, notamment le risque et les conséquences d’accidents ainsi que la production de déchets radioactifs de longue durée. La mise sur le marché de tels systèmes permettrait une synergie bénéfique avec les énergies renouvelables existantes et futures. Les réacteurs à sels fondus utilisent du combustible nucléaire sous forme liquide, dissout dans un sel d’halogénures.  Cette propriété améliore la résistance aux accidents de tels systèmes en permettant par exemple le drainage du cœur dans un réservoir refroidi de manière passive. La nature fluide du combustible implique l’absence de dégâts dus aux radiations, ce qui lève les limitations usuelles sur le temps passé par le combustible en cœur (et donc sur la quantité d’énergie extraite).  L’utilisation de sels fondus permet, elle, de réduire le nombre d’étapes nécessaires pour le retraitement du combustible (normalement d’abord converti en sel). 

Le but du projet est de produire un design préliminaire d’un réacteur à sels fondus modulaire et de faible puissance à l’aide de la littérature et d’outils computationnels modernes. Il est initialement prévu d’utiliser un spectre neutronique rapide et un fonctionnement en cycle fermé (recyclage total du combustible), d’autres possibilités étant à envisager et à évaluer.

Direct link to Lay Summary Last update: 28.03.2014

Responsible applicant and co-applicants

Employees

Collaboration

Group / person Country
Types of collaboration
Terrestrial Energy Canada (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
SAMOFAR EU Project Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
SAMOFAR Molten Salt Reactors Summer School Poster On the feasibility of Breed-and-Burn fuel cycles in Molten Salt Reactors 02.07.2017 Lecco, Italy, Italy Hombourger Boris;
2017 International Fast Reactors Conference Poster On the Feasibility of Breed-and-Burn Fuel Cycles in Molten Salt Reactors 25.06.2017 Yekaterinburg, Russian Federation, Russia Hombourger Boris;
PSI NES PhD Day 2017 Poster Sustainable MSR Breeder for Waste Minimization 22.05.2017 Paul Scherrer Institut, Switzerland Hombourger Boris;
Wissenschaft-Apéro der Schweizerische Gesellschaft der Kernfachleute Individual talk Molten Salt Reactors as Waste Burners 07.03.2017 Baden , Switzerland Hombourger Boris;
PSI NES PhD Day 2016 Poster The EQL0D Procedure for Fuel Cycle Studies in Molten Salt Reactors 09.05.2016 Paul Scherrer Institut, Switzerland Hombourger Boris;
2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) Talk given at a conference Fuel Cycle Analysis of a Molten Salt Reactor for Breed-and-Burn Mode 03.05.2016 Nice, France, France Hombourger Boris;
2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) Talk given at a conference The EQL0D Procedure for Fuel Cycle Studies in Molten Salt Reactors 17.04.2016 San Francisco, USA, United States of America Hombourger Boris;
PSI NES PhD Day 2015 Poster Modelling coupled materials evolution: Application to MSRs 19.05.2015 Paul Scherrer Institut, Switzerland Hombourger Boris;
22nd International Conference in Nuclear Engineering (ICONE 22) Talk given at a conference Parametric Lattice Study of a Graphite-Moderated Molten Salt Reactor 07.07.2014 Prague, Czech Republic Hombourger Boris;


Self-organised

Title Date Place
Molten Salt Reactor Workshop at PSI 24.01.2017 Paul Scherrer Institut, Switzerland

Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Portes Ouvertes EPFL 2016 Performances, exhibitions (e.g. for education institutions) 05.11.2016 EPFL, Switzerland Hombourger Boris;
Tag der offenen Tür PSI Performances, exhibitions (e.g. for education institutions) 18.10.2015 PSI, Switzerland Krepel Jiri; Hombourger Boris;


Communication with the public

Communication Title Media Place Year
Media relations: print media, online media Molten salt reactors – exploring an alternative PSI Website German-speaking Switzerland Italian-speaking Switzerland Western Switzerland International 2016

Awards

Title Year
Best Student Paper Award at the ICONE 22 Conference 2014

Associated projects

Number Title Start Funding scheme
156080 Development of a Methodology for Nuclear Data Assimilation in Reactor Physics employing the PROTEUS Experimental Data Base 01.10.2015 Project funding (Div. I-III)

Abstract

In light of the new nuclear energy policies of several countries around the world, including Switzerland and Germany, the potential for nuclear waste minimization remains of interest to alleviate the burden on final waste repositories. Newly emerging nuclear energy systems have the potential to excel current reactor technologies, both in terms of safety and sustainability. The Thorium cycle is known to produce less transuranic waste; however its implementation remains to be done. The possibility of burning transuranic isotopes has also been established for fast critical and subcritical, accelerator-driven systems. System-specific issues however remain to be solved before such reactors can be commercially deployed.One of the so-called “Generation IV” concepts capable of breeding from Thorium and burning actinide waste is the Molten Salt Reactor (MSR) in its fast-spectrum version, which possesses, because of its use of a liquid fuel based on a molten salt, attractive characteristics for this purpose. Notably, the absence of physical damage to the liquid fuel allows it to remain virtually indefinitely in the reactor, implying that the fuel does not have to be reprocessed multiple times - a complex and costly procedure. The possibility of refueling the reactor while in power operation also provides a flexibility that is of interest both for thorium and transuranic waste burning. Moreover, fast-spectrum MSRs possess naturally negative reactivity feedback coefficients, thus making them attractive from a safety point of view as well compared to their solid-fuelled counterparts. The present proposal for doctoral research shall be embedded in the framework of the Generation IV International Forum (GIF) and European R&D activities on Molten Salt Reactors (MSRs). The primary goal of the work is to investigate the applicability of the Small Modular Reactor (SMR) approach to the concept of a closed cycle (Thorium-Uranium or Uranium-Plutonium) and/or transuranics (TRU) -burning MSR with an emphasis on the task of plutonium and minor actinides stockpile management. The unique safety and operation properties of liquid-fuel nuclear systems based on molten salts make them attractive as an alternative to the current nuclear technology. Moreover, the same characteristics may enable advanced fuel cycles without the engineering difficulties traditionally encountered with more classical advanced reactors. Notably, a specific safety strategy should be developed and applied to the MSR design to establish criteria pertaining to safety of the reactor. Such studies involve steady-state and transient coupled neutronics and thermal-hydraulics (CFD) calculations, using a suite of computer codes and methods composed during the last 10 years in the FAST reactors group at PSI.The FAST reactors group at PSI is an adequate environment for pursuing the proposed research work because of the expertise of several members of the group and its recent involvement in MSR research via the European FP7 Evaluation and Viability Of Liquid fuel fast reactor systems (EVOL) project.
-