Projekt

Zurück zur Übersicht

Micro- and nanoanatomy of human brain tissues

Titel Englisch Micro- and nanoanatomy of human brain tissues
Gesuchsteller/in Müller Bert
Nummer 147172
Förderungsinstrument Interdisziplinäre Projekte
Forschungseinrichtung Zentrum für Lehre und Forschung Kantonsspital Basel Onkologie
Hochschule Universität Basel – BS
Hauptdisziplin Andere Gebiete der Physik
Beginn/Ende 01.09.2013 - 31.08.2017
Bewilligter Betrag 319'038.00
Alle Daten anzeigen

Alle Disziplinen (5)

Disziplin
Andere Gebiete der Physik
Biomedical Engineering
Neurophysiologie und Hirnforschung
Materialwissenschaften
Biophysik

Keywords (8)

synchrotron radiation-based micro CT; micro-anatomy; grating interferometer; phase tomography; magnetic resonance imaging (MRI); spatially resolved X-ray scattering; X-ray tomography; stereotactic brain atlas

Lay Summary (Deutsch)

Lead
Das Ziel des Projektes ist die Untersuchung der Gewebearten des menschlichen Hirns bis hinunter auf die zelluläre und nanoskopische Ebene. Dabei soll die Lücke bezüglich der räumlichen Auflösung zwischen den gängigen klinischen Methoden wie CT und MRI und der Histologie mit Hilfe der röntgenbasierten Phasenkontrasttomographie geschlossen werden. Darüber hinaus sollen Häufigkeiten und Orientierungen von Nanostrukturen im Gewebe mit ortsaufgelöster Kleinwinkelstreuung erlangt werden.
Lay summary

Für Untersuchungen auf zellulärer Ebene an menschlichem Gewebe post mortem hat sich die röntgenbasierte Phasenkontrasttomographie in den letzten Jahren zu einer sehr wichtigen Methode entwickelt. Kürzlich veröffentlichte Studien haben gezeigt, dass sowohl die räumliche Auflösung als auch der Kontrast des Verfahrens ausreichen, einzelne Zellen innerhalb des umliegenden Weichgewebes und ohne den Einsatz von Kontrastmitteln zu visualisieren. Quasi-periodische Nanostrukturen innerhalb des menschlichen Gewebes können mit der ortsaufgelösten röntgenbasierten Kleinwinkelstreuung über makroskopische Distanzen lokalisiert werden.

Nach der Realisierung des gitterbasierten Phasenkontrastaufbaus im konventionell erhältlichen nanotom® m von GE Healthcare am Biomaterials Science Center der Universität Basel wird die Methode mit den Resultaten, die an Synchrotronstrahlungsquellen erzeugt wurden, verglichen. Nach der Validierung der Methode wird der Aufbau eine Vielzahl von Forschungsprojekten für die Untersuchungen von verschiedenen Gewebearten, insbesondere von Weichgeweben, auf zellulärer Ebene unterstützen. Für anatomische Untersuchungen von Nanostrukturen innerhalb des menschlichen Gehirns wird die Kleinwinkelstreuung die Nanoanatomie als Teilgebiet der Nanomedizin entscheidend prägen. Nanoanatomie wird als neues Fach der Anatomie die Makro- und Mikroanatomie ergänzen

Direktlink auf Lay Summary Letzte Aktualisierung: 19.09.2013

Lay Summary (Englisch)

Lead
The human body contains 10^14 cells, which are categorized into 200 to 400 cell types. Despite of its size and complexity one can reasonably assume that it is possible to describe its three-dimensional structure on the cellular level. To achieve this goal, we will perform grating-based hard X-ray phase tomography using synchrotron radiation facilities the available laboratory system phoenix nanotom® expanded with a grating interferometry system.
Lay summary
The human body contains 10^14 cells, which are categorized into 200 to 400 cell types. The human brain accounts for about 2% of the weight of an average person. This is a much larger percentage than in other primates. Despite of its size and complexity one can reasonably assume that it is possible to reveal the individual cells within the human brain and describe its three-dimensional structure on the cellular level. To achieve this goal, we will perform grating-based hard X-ray phase tomography using synchrotron radiation facilities. In addition we will expand the available laboratory system phoenix nanotom® m from GE Healthcare by a grating interferometer.
An average human cell contains 10^14 atoms, which are categorized in the 118 elements of the periodic table. Thanks to this clarity, one can reasonably expect that it is possible to reveal the nanostructure of selected pieces of brain tissues. To achieve this, we will perform spatially resolved X-ray scattering experiments at the cSAXS-beamline, Swiss Light Source at the Paul Scherrer Institut. The myelinated axons, for example, which stretch for over 10^8 m if aligned end-to-end, exhibit a quasi-periodical arrangement of the lamellar structure of the myelin sheaths repeating less than every 20 nm. This characteristic periodicity will be used to determine the abundance and the orientation of the myelin fiber bundles in projection images similar to histology and in three-dimensional space applying tomographic reconstruction techniques, which are to be further developed.
The interdisciplinary project aims to bridge the gap concerning spatial resolution between the tomography data from clinical modalities (CT and MRI) and histological approaches employed by anatomists and pathologists taking advantage of recent developments in physics: X-ray scattering and phase tomography.
Direktlink auf Lay Summary Letzte Aktualisierung: 19.09.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Grating-based tomography applications in biomedical engineering
Schulz Georg, Thalmann Peter, Khimchenko Anna, Müller Bert (2017), Grating-based tomography applications in biomedical engineering, in Developments in X-Ray Tomography XI, San Diego, United StatesSPIE, San Diego.
Imaging cellular and subcellular structure of human brain tissue using micro computed tomography
Khimchenko Anna, Schulz Georg, Bikis Christos, Hieber Simone E., Deyhle Hans, Schweighauser Gabriel, Hench Jürgen, Pacureanu Alexandra, Thalmann Peter, Chicherova Natalia, Müller Bert, Osmani Bekim, Cloetens Peter, Müller-Gerbl Magdalena (2017), Imaging cellular and subcellular structure of human brain tissue using micro computed tomography, in Developments in X-Ray Tomography XI, San Diego, United StatesSPIE, San Diego.
Removing ring artefacts from synchrotron radiation-based hard x-ray tomography data
Bikis Christos, Schulz Georg, Paleo Pierre, Mirone Alessandro, Rack Alexander, Müller Bert, Thalmann Peter, Siegrist Stefan, Cörek Emre, Huwyler Jörg (2017), Removing ring artefacts from synchrotron radiation-based hard x-ray tomography data, in Developments in X-Ray Tomography XI, San Diego, United StatesSPIE, San Diego.
Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source
Khimchenko A, Bikis C, Schulz G, Zdora M-C, Zanette I, Vila-Comamala J, Schweighauser G, Hench J, Hieber S E, Deyhle H, Thalmann P, Müller B (2017), Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source, in Journal of Physics: Conference Series, 849, 012030-012030, IOP Publishing, Britol, UK 849, 012030-012030.
Multimodal imaging of the human knee down to the cellular level
Schulz G., Götz C, Müller-Gerbl M., Zanette I., Zdora M.-C., Khimchenko A., Deyhle H., Thalmann P., Müller B. (2017), Multimodal imaging of the human knee down to the cellular level, in Journal of Physics: Conference Series, 849, 012026-012026, IOP Publishing, Bristol, UK 849, 012026-012026.
Three-dimensional imaging of human brain tissues using absorption-contrast high-resolution X-ray tomography
Khimchenko Anna, Schulz Georg, Bikis Christos, Deyhle Hans, Chicherova Natalia, Hieber Simone E., Schweighauser Gabriel, Hench Jürgen, Muller Bert (2017), Three-dimensional imaging of human brain tissues using absorption-contrast high-resolution X-ray tomography, in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, Oregon, United StatesSPIE, Portland.
Single and double grating-based X-ray microtomography using synchrotron radiation
Thalmann P., Bikis C., Hipp A., Müller B., Hieber S. E., Schulz G. (2017), Single and double grating-based X-ray microtomography using synchrotron radiation, in Applied Physics Letters, 110(6), 061103-061103.
Tomographic brain imaging with nucleolar detail and automatic cell counting
Hieber Simone E., Bikis Christos, Khimchenko Anna, Schweighauser Gabriel, Hench Jürgen, Chicherova Natalia, Schulz Georg, Müller Bert (2016), Tomographic brain imaging with nucleolar detail and automatic cell counting, in Scientific Reports, 6(1), 32156-32156.
Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms
Hieber Simone E., Bikis Christos, Khimchenko Anna, Schulz Georg, Deyhle Hans, Thalmann Peter, Chicherova Natalia, Rack Alexander, Zdora Marie-Christine, Zanette Irene, Schweighauser Gabriel, Hench Jürgen, Müller Bert (2016), Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms, in SPIE Optical Engineering + Applications, San Diego, California, United StatesSPIE, San Diego.
Hierarchical imaging of the human knee
Schulz Georg, Götz Christian, Deyhle Hans, Müller-Gerbl Magdalena, Zanette Irene, Zdora Marie-Christine, Khimchenko Anna, Thalmann Peter, Rack Alexander, Müller Bert (2016), Hierarchical imaging of the human knee, in SPIE Optical Engineering + Applications, San Diego, California, United StatesSPIE, San Diego.
High-resolution synchrotron radiation-based phase tomography of the healthy and epileptic brain
Bikis Christos, Janz Philipp, Schulz Georg, Schweighauser Gabriel, Hench Jürgen, Thalmann Peter, Deyhle Hans, Chicherova Natalia, Rack Alexander, Khimchenko Anna, Hieber Simone E., Mariani Luigi, Haas Carola A., Müller Bert (2016), High-resolution synchrotron radiation-based phase tomography of the healthy and epileptic brain, in SPIE Optical Engineering + Applications, San Diego, California, United StatesSPIE, San Diego.
Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m
Deyhle Hans, Schulz Georg, Khimchenko Anna, Bikis Christos, Hieber Simone E., Jaquiery Claude, Kunz Christoph, Müller-Gerbl Magdalena, Höchel Sebastian, Saxer Till, Stalder Anja K., Ilgenstein Bernd, Beckmann Felix, Thalmann Peter, Buscema Marzia, Rohr Nadja, Holme Margaret N., Müller Bert (2016), Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m, in SPIE Optical Engineering + Applications, San Diego, California, United StatesSPIE, San Diego.
X-ray micro-tomography for investigations of brain tissues on cellular level
Khimchenko Anna, Schulz Georg, Deyhle Hans, Thalmann Peter, Zanette Irene, Zdora Marie-Christine, Bikis Christos, Hipp Alexander, Hieber Simone E., Schweighauser Gabriel, Hench Jürgen, Müller Bert (2016), X-ray micro-tomography for investigations of brain tissues on cellular level, in SPIE Optical Engineering + Applications, San Diego, California, United StatesSPIE, San Diego.
Extending two-dimensional histology into the third dimension through conventional micro computed tomography
Khimchenko Anna, Deyhle Hans, Schulz Georg, Schweighauser Gabriel, Hench Jürgen, Chicherova Natalia, Bikis Christos, Hieber Simone, Müller Bert (2016), Extending two-dimensional histology into the third dimension through conventional micro computed tomography, in NeuroImage, 139, 26-36.
Non-destructive phase contrast hard X-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues
Khimchenko Anna, Schulz Georg, Deyhle Hans, Hieber Simone E., Hasan Samiul, Bikis Christos, Schulz Joachim, Costeur Loic, Müller Bert (2016), Non-destructive phase contrast hard X-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues, in Proceedings of SPIE; Bioinspiration, Biomimetics, and Bioreplication, SPIE, Bellingham WA 98227-0010 USA.
X-ray microscopy of soft and hard human tissues
Müller Bert, Schulz Georg, Deyhle Hans, Stalder Anja K., Ilgenstein Bernd, Holme Margaret N., Weitkamp Timm, Beckmann Felix, Hieber Simone E. (2016), X-ray microscopy of soft and hard human tissues, in AIP Conference Proceedings, AIP Publishing, Melville, NY 11747.
Energy shift of the pink beam at the beamline ID19 measured with a grating interferometer and a liquid phantom
Khimchenko Anna, Müller Bert, Schulz Georg (2015), Energy shift of the pink beam at the beamline ID19 measured with a grating interferometer and a liquid phantom, in European Cells and Materials, eCM Journal, Davos, Switzerland.
Single grating X-ray phase-contrast tomography for evaluation of brain tissue degeneration on cellular level
Khimchneko Anna, Schulz Georg, Zanette Irene, Zdora Marie-Christine, Hipp Alexander, Deyhle Hans, Hieber Simone, Bikis Christos, Schweighauser Gabriel, Hench Jürgen, Thalmann Peter, Müller Bert, Single grating X-ray phase-contrast tomography for evaluation of brain tissue degeneration on cellular level, in European Cells and Materials, eCM Journal, Davos, Switzerland.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
Alexander Rack/ID19, ESRF Frankreich (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Chritoph Rau/I13, Diamond Grossbritannien und Nordirland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Pfeiffer/TU München Deutschland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
Weitkamp/Soleil Frankreich (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Felix Beckmann/HZG, P05 & P07, DESY Deutschland (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
Universitätsspital Basel Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Publikation
- Forschungsinfrastrukturen
- Austausch von Mitarbeitern

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
XNPIG2017 Vortrag im Rahmen einer Tagung Synchrotron radiation based single and double grating phase microtomography 12.09.2017 Zürich, Schweiz Müller Bert; Khimchenko Anna; Schulz Georg;
SSB+RM 2017 Poster Phase tomography using laboratory sources to visualise cartilage of human knee 30.08.2017 Winterthur, Schweiz Müller Bert; Müller-Gerbl Magdalena; Schulz Georg; Khimchenko Anna;
SPIE - Developments in X-Ray Tomography XI Vortrag im Rahmen einer Tagung Grating-based tomography applications in biomedical engineering 08.08.2017 San Diego, Vereinigte Staaten von Amerika Schulz Georg;
CLINAM 2017 Poster Abundance and orientation of myelin in parts of human brains 07.05.2017 Basel, Schweiz Bunk Oliver; Schulz Georg; Müller Bert;
IMXP 2017 Poster Multimodal imaging of the human knee down to the cellular level 26.01.2017 Garmisch-Partenkirchen, Deutschland Müller Bert; Khimchenko Anna; Müller-Gerbl Magdalena; Schulz Georg;
SPIE - Developments in X-Ray Tomography X Vortrag im Rahmen einer Tagung Hierarchical imaging of the human knee 29.08.2016 San Diego, Vereinigte Staaten von Amerika Khimchenko Anna; Müller-Gerbl Magdalena; Müller Bert; Schulz Georg;
International Conference X-Ray Microscopy XRM2016 Poster Multimodal imaging of the human knee down to the cellular level 15.08.2016 Oxford, Grossbritannien und Nordirland Schulz Georg; Müller-Gerbl Magdalena; Müller Bert; Khimchenko Anna;
22nd Swiss Conference on Biomaterials and Regenerative Medicine Poster Single grating X-ray phase-contrast tomography for the evaluation of brain tissue degeneration on the cellular level 09.06.2016 Zürich, Schweiz Schulz Georg; Khimchenko Anna; Müller Bert;
SPIE Smart Structures/NDE 2016, Bioinspiration, Biomimetics, and Bioreplication VI Vortrag im Rahmen einer Tagung Hard X-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues 21.03.2016 Las Vegas, Nevada, Vereinigte Staaten von Amerika Khimchenko Anna; Schulz Georg; Müller Bert;
i-net Technology Event “Innovative Nanomaterials for Medtech and Life Sciences” Vortrag im Rahmen einer Tagung Visualization of the human body down to the molecular level 25.01.2016 Allschwil, Schweiz Schulz Georg;
International Symposium on BioMedical Applications of X-Ray Phase Contrast Imaging (IMXP) Poster Recent advances in x-ray phase-contrast imaging for biomedical applications at Diamond I13 21.01.2016 Garmisch-Partenkirchen, Deutschland Müller Bert; Schulz Georg; Khimchenko Anna;
23rd International Congress on X-ray Optics and Microanalysis (ICXOM23) Poster X-ray phase-contrast imaging at Diamond I13 Beamline 14.09.2015 Brookhaven National Laboratory Upton, NY, Vereinigte Staaten von Amerika Khimchenko Anna; Schulz Georg;
XNPIG (X-Ray and Neutron Phase Imaging with Gratings) Vortrag im Rahmen einer Tagung Grating-based X-ray phase tomography setup for commercial CT system nanotom® m 08.09.2015 NIH, Bethesda, Maryland, Vereinigte Staaten von Amerika Khimchenko Anna; Schulz Georg; Müller Bert;
21th Swiss Conference on Biomaterials and Regenerative Medicine Poster Three-dimensional visualization of brain tissues by phase contrast microtomography using synchrotron radiation 09.06.2015 EPFL, Lausanne, Schweiz Khimchenko Anna; Müller Bert; Schulz Georg;
DESY Photon Science Users' Meeting 2015 Poster Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard tissues using plaques- containing blood vessels as example 29.01.2015 Hamburg, Deutschland Schulz Georg; Müller Bert; Khimchenko Anna;
IMXP 2015 Vortrag im Rahmen einer Tagung Murine brain tumor growth studied by grating- based phase contrast microtomography 29.01.2015 Garmisch-Partenkirchen, Deutschland Schulz Georg; Müller Bert;
International Symposium on BioMedical Applications of X-Ray Phase Contrast Imaging (IMXP 2015) Poster Synchrotron-radiation grating-based x-ray phase tomography of selected materials for calibration of grating-based measurements at nanotom® m 29.01.2015 Garmisch-Partenkirchen, Deutschland Khimchenko Anna; Schulz Georg; Müller Bert;
International Symposium on BioMedical Applications of X-Ray Phase Contrast Imaging (IMXP 2015) Poster Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard tissues using plaques- containing blood vessels as example 29.01.2015 Garmisch-Partenkirchen, Deutschland Khimchenko Anna; Schulz Georg; Müller Bert;


Auszeichnungen

Titel Jahr
H. Don Wolpert Award at the SPIE 2016 - Smart Structures NDE 2016

Verbundene Projekte

Nummer Titel Start Förderungsinstrument
144535 Tomography of microvascular structures in murine brain tumors 01.01.2013 Resource not found: 'ae7a8456-d388-4614-91fa-9226a7c1e277'
135496 Nanostructures for artificial muscles (NAM) 01.09.2011 Projektförderung (Abt. I-III)
57127 Micro computer tomography with X-rays for the characterization of biocompatible materials 01.10.1999 Resource not found: 'ae7a8456-d388-4614-91fa-9226a7c1e277'
133802 Micro- and Nanotomography 01.03.2011 R'EQUIP
150164 Multi-modal matching of two-dimensional images with three-dimensional data in the field of biomedical engineering 01.11.2013 Resource not found: 'ae7a8456-d388-4614-91fa-9226a7c1e277'
137772 High-resolution quantitative local X-ray phase tomography 01.04.2013 Projektförderung (Abt. I-III)
125406 High-resolution 3D imaging of the human brain post mortem 01.04.2009 Resource not found: '3b845d41-c308-4023-8755-657aca6feb0d'
143980 Minimally invasive ablation of liver malignancies using MRgHIFU : Pilot Studies in Clinical Research 01.01.2013 Resource not found: '95de6490-c2c4-44f8-97e6-6c3185b22b2b'

Abstract

The human body contains 10^14 cells, which are categorized into 200 to 400 cell types. The human brain accounts for about 2% of the weight of an average person. This is a much larger percentage than in other primates. Despite of its size and complexity one can reasonably assume that it is possible to reveal the individual cells within the human brain and describe its three-dimensional structure on the cellular level. To achieve this goal, we will perform grating-based hard X-ray phase tomography using synchrotron radiation facilities. In addition we will expand the available laboratory system phoenix nanotom® m from GE Healthcare by a grating interferometer.An average human cell contains 10^14 atoms, which are categorized in the 118 elements of the periodic table. Thanks to this clarity, one can reasonably expect that it is possible to reveal the nanostructure of selected pieces of brain tissues. To achieve this, we will perform spatially resolved X-ray scattering experiments at the cSAXS-beamline, Swiss Light Source at the Paul Scherrer Institut. The myelinated axons, for example, which stretch for over 10^8 m if aligned end-to-end, exhibit a quasi-periodical arrangement of the lamellar structure of the myelin sheaths repeating less than every 20 nm. This characteristic periodicity will be used to determine the abundance and the orientation of the myelin fiber bundles in projection images similar to histology and in three-dimensional space applying tomographic reconstruction techniques, which are to be further developed.The interdisciplinary project aims to bridge the gap concerning spatial resolution between the tomography data from clinical modalities (CT and MRI) and histological approaches employed by anatomists and pathologists taking advantage of recent developments in physics: X-ray scattering and phase tomography.
-