Projekt

Zurück zur Übersicht

Full-duplex Radio, Theory and Experiments

Gesuchsteller/in Burg Andreas Peter
Nummer 146753
Förderungsinstrument Projektförderung (Abt. I-III)
Forschungseinrichtung Laboratoire de circuits pour télécommunications EPFL - STI - IEL - TCL
Hochschule EPF Lausanne - EPFL
Hauptdisziplin Informatik
Beginn/Ende 01.04.2013 - 31.03.2017
Bewilligter Betrag 430'835.00
Alle Daten anzeigen

Alle Disziplinen (2)

Disziplin
Informatik
Elektroingenieurwesen

Keywords (4)

Full Duplex Radio; Wireless Communications; Relaying; Physical Layer

Lay Summary (Deutsch)

Lead
In den vergangenen Jahren hatte das exponentielle Wachstum der drahtlosen Kommunikation einen enormen Einfluss auf die wirtschaftliche und soziale Entwicklung. Die steigende Nachfrage nach hoeherem Datendurchsatz ist dabei zu einer Herausforderung fuer den technischen Fortschritt geworden, da die Bandbreite des nutzbaren elektomagnetischen Spektrums stark begrenzt ist. Immer neue Technologien sind notwendig um mit den steigenden Anforderungen an Durchsatz und Kapazitaet mitzuhalten.
Lay summary

Bei der Entwicklung neuer Uebertragungstechniken blieb soweit eine wesentliche Einschraenkung bestehender Systeme unangetastet: Auf physikalischer Ebene findet Kommunikation ausschliesslich in einer Richtung statt, da heutige  Transceiver nicht in der Lage sind gleichzeitig im selben Frequenzband zu senden und zu empfangen. Eine bi-direktionale Verbindung belegt daher entweder zwei Frequenzbaender oder Up- und Downlink nutzen den Kanal abwechselnd. Dies fuehrt zu einer Halbierung der spektralen Effizienz im Vergleich zu einer echten full-duplex Verbindung und bringt auch weitere Verluste mit sich, z.B. durch Totzeiten beim Wechsel der Verbindungsrichtung.

In diesem Projekt erarbeiten wir Moeglichkeiten, diese Einschraenkung zu durchbrechen. Mit der Entwicklung sogenannter Full-Duplex Transceiver und entsprechder Systeme ergeben sich voellig neue Moeglichkeiten in der Telekommunikation. Im einfachsten Fall einer Punkt-zu-Punkt Verbindung kann der Durchsatz zum Beispiel verdoppelt werden indem sowohl Up- als auch Downlink das gleiche Frequenzband gleichzeitig verwenden. In komplexeren Systemen koennen Full-Duplex Relays Signale ohne Effizienzverlust auffangen und direkt verstaerkt oder bereinigt abgeben und so die Reichweite von Funksystemen erhoehen.

Das Problem bei der Entwicklung solcher Systeme liegt in der Notwendigkeit das eigene Signal zu unterdruecken um das millionenfach schwaechere Signal der Gegenseite nicht zu ueberhoeren. Unsere Forschung beschaeftigt sich mit Methoden um eine ausreichend gute Signalunterdrueckung zu erreichen. Hierzu werden Prototypen entwickelt die als Basis fuer Messungen und Modelle dienen aus denen bessere Methoden zur Interferenzunterdrueckung erarbeitet werden. Parallel dazu beschaeftigen wir uns mit Algorithmen und Uebertragungstechniken die die neu gewonnene Faehigkeit zur Full-Duplex Uebertragung optimal nutzen um Datenrate, Reichweite, und Kapazitaet zu erhoehen. Mit Hilfe der entwickelten Prototypen muessen sich diese Techniken dann in der Praxis beweisen.

Direktlink auf Lay Summary Letzte Aktualisierung: 27.08.2013

Lay Summary (Englisch)

Lead
Over the last decades, the exponential growth of all types of wireless communication systems has had a profound impact on the world, both economically and socially. The seemingly insatisfiable demand for communication throughput is putting increasing strain on the naturally limited electromagnetic spectrum that is available to us. This challenge drives research toward innovative engineering solutions that maximize the efficient use of the spectrum in a variety of scenarios.
Lay summary

Nevertheless, toward that objective, one basic assumption has remained unchallenged over the years: a transceiver can only transmit or receive on the same frequency
band, but not both at the same time. Consequently, two communicating transceivers must share the spectrum, either in time (taking turns using
the whole spectrum) or in frequency (dividing the spectrum into two smaller sub-channels). This so-called half-duplex mode is used in the radio interface of
all wireless communication systems today.

In this project, we challenge that fundamental assumption and create full duplex transceivers, capable of simultaneously
transmitting and receiving on the same frequency band. The first obvious advantage is that the efficiency with which we use the spectrum is doubled.
Furthermore, even more significant improvements are possible, when considering a whole network of such full duplex transceivers. The famous hidden
terminal problem can be alleviated and the various techniques for relaying information become much simpler and much more efficient.

The principal difficulty that has made full duplex mode impractical so far is the strong self-interference. In this project we study, perfect, combine, and
finally implement various methods of self-interference suppression. We treat the entire problem from the ground up, first constructing theoretical models,
then adapting the suppression techniques to maximize their effectiveness, and finally building a comprehensive testbed. This will allow us to give the first
demonstration of full duplex operation in both narrow- and wideband channels, with single or multiple-antenna (MIMO) terminals, and in single link as well
as relaying scenarios.

Direktlink auf Lay Summary Letzte Aktualisierung: 27.08.2013

Verantw. Gesuchsteller/in und weitere Gesuchstellende

Mitarbeitende

Publikationen

Publikation
Digital predistortion of power amplifier non-linearities for full-duplex transceivers
Austin Andrew C. M., Balatsoukas-Stimming Alexios, Burg Andreas (2016), Digital predistortion of power amplifier non-linearities for full-duplex transceivers, in 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAW, Edinburgh, United Kingdom.
Sliding Window Spectrum Sensing for Full-Duplex Cognitive Radios with Low Access-Latency
Afisiadis Orion, Austin Andrew C. M., Balatsoukas-Stimming Alexios, Burg Andreas (2016), Sliding Window Spectrum Sensing for Full-Duplex Cognitive Radios with Low Access-Latency, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, ChinaIEEE, USA.
Baseband and RF hardware impairments in full-duplex wireless systems: experimental characterisation and suppression
Balatsoukas-Stimming Alexios, Austin Andrew CM, Belanovic Pavle (2015), Baseband and RF hardware impairments in full-duplex wireless systems: experimental characterisation and suppression, in EURASIP Journal on Wireless Communications and Networking, 2015(1), 142-142.
Demo: Concurrent Spectrum Sensing and Transmission for Cognitive Radio using Self-Interference Cancellation
(2015), Demo: Concurrent Spectrum Sensing and Transmission for Cognitive Radio using Self-Interference Cancellation, in the 16th ACM International Symposium, Hangzhou, ChinaACM, USA.
Measurement-based characterization of residual self-interference on a full-duplex MIMO testbed
Alexandris Konstantinos, Balatsoukas-Stimming Alexios, Burg Andreas (2014), Measurement-based characterization of residual self-interference on a full-duplex MIMO testbed, in 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, SpainIEEE, USA.
A multipurpose testbed for full-duplex wireless communications
Belanovic Pavle, Balatsoukas-Stimming Alexios, Burg Andreas (2013), A multipurpose testbed for full-duplex wireless communications, in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, United Arab Emirates.
On self-interference suppression methods for low-complexity full-duplex MIMO
Belanovic Pavle, Alexandris Konstantinos, Burg Andreas (2013), On self-interference suppression methods for low-complexity full-duplex MIMO, in 2013 Asilomar Conference on Signals, Systems and Computers, California.
DIGITAL PREDISTORTION OF HARDWARE IMPAIRMENTS FOR FULL-DUPLEX TRANSCEIVERS
Austin Andrew C. M., Afisiadis Oion, Burg Andreas, DIGITAL PREDISTORTION OF HARDWARE IMPAIRMENTS FOR FULL-DUPLEX TRANSCEIVERS, in Proceedings of GlobalSIP Conference.
Full-Duplex Communications for Wireless Links with Asymmetric Capacity Requirements
Afisiadis Orion, Austin Andrew C. M., Balatsoukas-Stimming Alexios, Burg Andreas, Full-Duplex Communications for Wireless Links with Asymmetric Capacity Requirements, in Proceedings of the Asilomar Conference on Signals, Systems and Computers, USA.

Zusammenarbeit

Gruppe / Person Land
Formen der Zusammenarbeit
National Instruments Schweiz (Europa)
- vertiefter/weiterführender Austausch von Ansätzen, Methoden oder Resultaten
- Forschungsinfrastrukturen

Wissenschaftliche Veranstaltungen

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
Workshop on Full-Duplex Techniques for 5G and Beyond at the European Wireless Conference 2016 Vortrag im Rahmen einer Tagung Workshop Mini Keynote 18.05.2016 Oulu, Finnland Burg Andreas Peter;
Panel Session at MobiHoc 2014 Conference Vortrag im Rahmen einer Tagung Full Duplex Communications in Wireless Networks 11.08.2014 Philadelphia, Vereinigte Staaten von Amerika Burg Andreas Peter;
Communication Theory Workshop 2014 Vortrag im Rahmen einer Tagung Full-Duplex MIMO: Spatial Processing and Characterization 25.05.2014 Curacao, Niederländische Antillen Burg Andreas Peter;
Demo Session at IEEE ICECS Conference 2013 Vortrag im Rahmen einer Tagung Live-Demonstration of a True Full-Duplex Radio Link using National Instruments USPRs 09.12.2013 Abu Dhabi, Vereinigte Arabische Emirate Balatsoukas Stimming Alexios Konstantinos; Burg Andreas Peter; Belanovic Pavle;


Veranstaltungen zum Wissenstransfer

Aktiver Beitrag

Titel Art des Beitrags Titel des Artikels oder Beitrages Datum Ort Beteiligte Personen
NI Days 2014 Vortrag 05.03.2014 Bern, Schweiz


Kommunikation mit der Öffentlichkeit

Kommunikation Titel Medien Ort Jahr
Video/Film Full Duplex Cognitive Radio Demo International 2015

Auszeichnungen

Titel Jahr
Second Prize in the MSc/PhD Forum Best Paper Award 2013

Abstract

Wireless communications has become one of the fastest growing markets worldwide. This technology has become so pervasive that the electromagnetic spectrum it uses has become a scarce commodity. Practically all wireless communication systems today operate in half-duplex mode: the two communicating transceivers either take turns using the medium, or divide it into two disjoint frequency bands, in order to transfer information in both directions.In full-duplex mode, both transceivers receive and transmit on the same frequency band, simultaneously. The obvious advantage is that the spectral efficiency doubles. And yet, full-duplex is never used in practical systems.The reason lies in the resulting self-interference and the limitations of the electronic components the transceivers are built from. The signal from the transceiver’s own transmitter is many orders of magnitude more powerfulthan the desired signal from the other transceiver. Unfortunately, practical receivers have limited dynamic range, which makes it impossible to recover the desired signal.Very recently, a practical implementation of a full-duplex system was demonstrated, using a number of selfinterference cancelation techniques. This opened the door to the use of the full-duplex mode in many areas ofwireless communications, as is evident by the high number of recent publications on this topic.Of course, the performance of idealized full-duplex systems is known in some areas (e.g. relaying). However, virtually no work has yet been done on understanding realistic full-duplex radios, that offer obvious benefits,but also suffer from characteristic imperfections that are due to the way they are constructed.Here we are proposing a comprehensive study of how realistic full-duplex transceivers will affect all major forms of wireless communications. This includes traditional narrowband and wideband communications links,multiple-input, multiple-output (MIMO) systems, as well as cooperative wireless communications in the form of simple and two-way relays.We will model the imperfect full-duplex transceiver in order to understand its fundamental limitations as a function of its structure. We will then apply this knowledge to derive the benefits that such a radio can achieveover traditional half-duplex transceivers, and how to best exploit this. We will also give an answer to the question: what is a better use of extra hardware resources: MIMO or full-duplex, and under which conditions?Finally, we will model relay channels, both simple and two-way, using real full-duplex radios, and explain the benefits of these with respect to the traditional half-duplex relays.The theoretical and the experimental sides of this particular topic are inextricably connected. We have therefore planned a hand-in-hand treatment of the two, which will make our theoretical results more connected to reality, and allow us to experimentally verify all our results. Our testbed will also serve as an effective demonstrator of the full-duplex concept. Due to the fortunate timing, the highly focused objectives of the project, and the profound implications of the FD paradigm, very significant impact can be expected.
-